DOI QR코드

DOI QR Code

Mechanistic Significances of the Reactivity-Selectivity Principle


Abstract

The relationship between the signs of ${\rho}i(0)$, ${\rho}j(0)$ and ${\rho}ij$ and validity of the reactivity-selectivity principle (RSP) has been derived: RSP is valid when W = ${\rho}i(0){\cdot}{\rho}j(0)/{\rho}ij$ is negative. The analysis of 100 reaction series indicated that for normal SN2 reactions involving variations of substituents in the nucleophile (X) and in the substrate (Y) RSP is valid only for a dissociative type for which ${\rho}Y(0)$ is negative, whereas for the acyl transfer reactions with rate-limiting breakdown of the tetrahedral intermediate RSP is valid in general for all substituent changes, X, Y and/or Z (substituent on the leaving group). The trends in the validity of RSP for certain types of reaction can be useful in supplementing the mechanistic criteria based on the signs of ${\rho}i(0)$, ${\rho}j(0)$ and ${\rho}ij$.

Keywords

References

  1. Adv. Phys. Org. Chem. v.14 Pross, A.
  2. Angew. Chem. Int. Ed. Engl. v.16 Giese, B.
  3. Chem. Rev. v.75 Johnson, C. D.
  4. J. Chem. Educ. v.64 Buncel, E.;Wilson, H.
  5. Tetrahedron v.36 Johnson, C. D.
  6. Tetrahedron v.34 McLennan, D. J.
  7. J. Chem. Soc., Perkin Trans. v.2 Exner, O.
  8. Chem. Soc. Rev. v.19 Lee, I.
  9. Adv. Phys. Org. Chem. v.27 Lee, I.
  10. J. Chem. Soc., Perkin Trans. v.2 Lee, I.;Lee, W. H.;Lee, H. W.;Bentley, T. W.
  11. J. Chem. Soc., Perkin Trans. v.2 Koh, H. J.;Lee, H. W.;Lee, I.
  12. Bull. Korean. Chem. Soc. Lee, I.
  13. J. Phys. Org. Chem. v.7 Lee, I.;Park, Y. K.;Huh, C.;Lee, H. W.
  14. J. Am. Chem. Soc. v.106 Palling, D. J.;Jencks, W. P.
  15. J. Am. Chem. Soc. v.115 Stefanidis, D.;Cho, S.;Dhe-Paganon, S.;Jencks, W. P.
  16. J. Phys. Org. Chem. Park, Y. S.;Kim, C. K.;Lee, B-S.;Lee, I.;Lim, W. M.;Kim, W, K.

Cited by

  1. Nucleophilic substitution reactions of cinnamoyl chlorides with anilines in acetonitrile and acetonitrile–methanol mixtures vol.1995, pp.12, 1995, https://doi.org/10.1039/p29950002257
  2. Nucleophilic Substitution Reactions of Thiophenyl 4-Nitrobenzoates with Pyridines in Acetonitrile vol.64, pp.13, 1995, https://doi.org/10.1021/jo990115p
  3. Kinetics and mechanism of the aminolysis of thiophenyl methylacetates in acetonitrile vol.32, pp.8, 1995, https://doi.org/10.1002/1097-4601(2000)32:8<485::aid-kin6>3.0.co;2-x
  4. Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclobutanecarboxylates in Acetonitrile vol.23, pp.5, 1995, https://doi.org/10.5012/bkcs.2002.23.5.715
  5. Kinetics and Mechanism of the Aminolysis of Phenacyl Bromides in Acetonitrile. A Stepwise Mechanism with Bridged Transition State vol.24, pp.7, 2003, https://doi.org/10.5012/bkcs.2003.24.7.993
  6. Effects of substituents on activation parameters in SN2 reactions at aliphatic carbon in solution vol.23, pp.5, 2010, https://doi.org/10.1002/poc.1634
  7. Kinetics and Mechanism of the Aminolysis of O-Methyl S-Aryl Thiocarbonates in Acetonitrile vol.32, pp.5, 1995, https://doi.org/10.5012/bkcs.2011.32.5.1539
  8. Towards mechanisms of bimolecular nucleophilic reactions in solution—probing the variation of the activation parameters in the reactions of aromatic compounds vol.25, pp.4, 1995, https://doi.org/10.1002/poc.1912
  9. Enthalpy–Entropy Correlations in Reactions of Aryl Benzoates with Potassium Aryloxides in Dimethylformamide vol.45, pp.4, 2013, https://doi.org/10.1002/kin.20763