HREIMS m / z (rel. int.) $285.2091\left[\mathrm{M}^{+}\right.$] (32) (calcd 285.2093 for $\mathrm{C}_{\mathrm{yg}} \mathrm{H}_{27} \mathrm{NO}$), 200.1071 (41), 186.0915 (68), 173.0846 (100), 144.0832 (14); UV (MeOH) 214, 239, 322, 335 nm ; IR (KBr) $3350,2830,1639,1608,1593,1557,1503,1481,1397,1360$, $1000,758,694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right) \delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.1$ $\mathrm{Hz}), 1.27-1.34(\mathrm{~m}, 8 \mathrm{H}), 1.32-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.46(\mathrm{~m}, 2 \mathrm{H})$, $1.70-1.73(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.33$ (ddd, $1 \mathrm{H}, J=8.2,6.9,1.0 \mathrm{~Hz}$), 7.53 (dd, $1 \mathrm{H}, J=8.4,1.0 \mathrm{~Hz}$), 7.62 (ddd, $1 \mathrm{H}, J=8.4,6.9,1.4 \mathrm{~Hz}$) 8.22 (dd, $1 \mathrm{H}, J=8.2,1.4$ $\mathrm{Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 179.6,153.3,140.6,132.6,126$. $2,124.47,124.42,118.6,116.2,33.4,33.0,30.6,30.5,30.4,30.3$, 30.0, 23.7, 14.4, 10.8 ppm ; HPLC Rt 11.5 min (same as the natural product. ${ }^{12}$ Phenomenex μ-Bondapak $\mathrm{C}-18,3.9 \times 300$ mm , UV $225 \mathrm{~nm}, 1 \mathrm{~mL} / \mathrm{min}, 75: 25 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$).

2-Pentyl-4-quinolinone (4). Obtained as a white solid in 69% yield starting from ethyl 3 -oxooctanoate (11$)^{18}: \mathrm{mp}$ $139-140{ }^{\circ} \mathrm{C}$ (lit ${ }^{9}$ 141-142 ${ }^{\circ} \mathrm{C}$, lit ${ }^{15} 134-138{ }^{\circ} \mathrm{C}$); EIMS m / z (rel. int.) $215\left[\mathrm{M}^{+}\right]$(17), 186 (8), 172 (26), 159 (100), 130 (12), 44 (29); UV (MeOH) 213, 234, 315, 327 nm ; IR (KBr) 3350 , $2900,1628,1592,1548,1495,1473,1439,1315,1249,798$, $750 \mathrm{~cm}^{-1}$; 'H NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.37-$ $1.42(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.78(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.22$ (s, 1 H) , 7.37 (ddd, $1 \mathrm{H}, J=8.2,7.0,1.1 \mathrm{~Hz}$) 7.57 (ddd, 1 H , $J=8.4,1.1,0.4 \mathrm{~Hz}$), 7.62 (ddd, $1 \mathrm{H}, J=8.4,7.0,1.5 \mathrm{~Hz}$) 8.20 - (ddd, $1 \mathrm{H}, J=8.2,1.5,0.4 \mathrm{~Hz}$) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 180.7$, $157.1,141.6,133.4,126.0,125.5,125.0,119.0,108.9,35.0,32.4$, 29.8, 23.4, 14.2 ppm .

2-Heptyl-4-quinolinone (5). Obtained as a white solid in 75% yield starting from ethyl 3-oxodecanoate (12) ${ }^{18}$: mp $141-142{ }^{\circ} \mathrm{C}$ (lit ${ }^{14}$. $138-141{ }^{\circ} \mathrm{C}$); EMMS m/2 (rel. int.) $243\left[\mathrm{M}^{+}\right]$ (21), 172 (43), 159 (100), 130 (9); UV (MeOH) 213, 234, 315, 327 nm ; IR (KBr) 3400, 2870, 1633, 1595, 1556, 1510, 1476, 1447, 1388, 1195, 1131, $763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.89$ $(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.29-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.76$ (quintet, $2 \mathrm{H}, J=7.7 \mathrm{~Hz}$), $2.71(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}$), $6.22(\mathrm{~s}, 1 \mathrm{H})$, 7.38 (ddd, $1 \mathrm{H}, J=8.2,7.0,1.1 \mathrm{~Hz}$), 7.57 (ddd, $1 \mathrm{H}, J=8.4,1.1$, 0.3 Hz) 7.62 (ddd, $1 \mathrm{H}, J=8.4,7.0,1.5 \mathrm{~Hz}$), 8.20 (ddd, 1 H , $J=8.2,1.5,0.3 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 180.7,157.1$, $141.6,133.4,126.0,125.5,125.0,119.0,108.9,35.0,32.8,30.2$, $30.1,30.0,23.6,14.3 \mathrm{ppm}$.

2-Nonyl-4-quinolinone (6). Obtained as a white solid in 72% yield starting from ethyl 3 -oxododecanoate (13) ${ }^{18}: \mathrm{mp}$ $131-132{ }^{\circ} \mathrm{C}$ (lit ${ }^{14} .129-132{ }^{\circ} \mathrm{C}$); ElMS m/z (rel. int.) $271\left[\mathrm{M}^{+}\right]$ (20), 172 (58), 159 (100), 130 (10); UV (MeOH) 213, 234, $315,327 \mathrm{~nm}$; IR (KBr) 2800, 1638, 1593, 1552, 1503, 1473, 1444, 1353, 1327, 1137, $762 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) 80.87$ $(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.22-1.33(\mathrm{~m}, 8 \mathrm{H}), 1.32-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.76$ (quintet, $2 \mathrm{H}, J=7.7 \mathrm{~Hz}$) $2.71(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.22(\mathrm{~s}, 1 \mathrm{H})$, 7.38 (ddd, $1 \mathrm{H}, J=8.2,7.0,1.1 \mathrm{~Hz}$), 7.57 (ddd, $1 \mathrm{H}, J=8.4,1.1$, 0.5 Hz), 7.62 (ddd, $1 \mathrm{H}, J=8.4,7.0,1.5 \mathrm{~Hz}$) 8.20 (ddd, 1 H , $J=8.2,1.5,0.5 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right) \delta 180.7,157.1$, $141.6,133.4,126.0,125.5,125.0,119.0,108.9,35.0,33.0,30.5$, $30.4,30.3,30.1,30.1,23.7,14.3 \mathrm{ppm}$.

Acknowledgment. This work was supported in part by Korea Research Foundation (Non Directed Research Fund), 1993.

References

1. Michael, J. P. Nat. Prod. Rep. 1992, 25.
2. Michael, J. P. Nat. Prod. Rep. 1994, 163.
3. Cornforth, J. W.; James, A. T. Biochem. J. 1956, 63, 124.
4. Hashimoto, M.; Hattori, K. Chem. Pharm. Bull. 1967, 15. 718.
5. Roitman, J. N.; Mahoney, N. E.; Janisiewicz, W. J.; Benson, M. J. Agric. Food Chem. 1990, 38, 538.
6. Homma, Y.; Sato, Z.; Hirayama, F.; Konno, K.; Shirahama, H.; Suzui. T. Soil Biol. Biochem. 1989, 21, 723.
7. Kunze, B.; Hofle, G.; Reichenbach, H. J. Antibiot. 1987, 40, 258.
8. Evans, J. R.; Napier, E. J.; Fletton, R. A. J. Antibiot. 1978, 31, 952.
9. Wratten, S. J.; Wolfe, M. S.; Andersen, R. J.; Faulkner, D. J. Antimicro. Agents Chemother. 1977, I1, 411.
10. Chung, K. H.; Cho, K. Y.; Takahashi, N.; Yoshida, S. J. Korean Agric. Chem Soc. 1991, 34, 43.
11. Kitamura, S.; Hashimuze, K.; Iida, T.; Miyashita, E.; Shirahata, K.; Kase, H. J. Antibiot. 1986, 39, 1160.
12. Moon, S.-S.; Kang, P. M.; Park, K. S.; Kim, C. H. Phytochemistry in press.
13. Conrad, M.; Limpach, L. Ber. 1887, 20, 944.
14. Somanathan, R.; Smith, K. M. J. Heterocyclic Chem. 1981. 18, 1077.
15. Chong, R. J.; Siddiqui, M. A.; Snieckus, V. Tetrahedron Lett. 1986, 27, 5323.
16. Nakatsu, T.; Johns, T.; Kubo, I.; Milton, K.; Sakai, M.; Chatani, K.; Saito, K.; Yamagiwa, Y.; Kamikawa, T. J. Nat. Prod. 1990, 53, 1508.
17. Coppola, G. M. J. Heterocyclic Chem. 1985, 22, 491.
18. Wierenga, W.: Skulnick, H. I. J. Org. Chem. 1979, 44, 310.
19. Oikawa, Y.; Sugano, K, Yonemitsu, O. J. Org. Chem. 1978, 43, 2087.
20. Hannick, S.; Kishi, Y. J. Org. Chem. 1983, 48, 3833.
21. Rathke, M. W.; Deitch, J. Tetrahedron Lett. 1971, 2953.
22. Rathke, M. W.; Cowan, P. J. J. Org. Chem. 1985, 50, 2622.
23. Clay, R. J.; Collom, T. A.; Karrick, G. L.; Wemple, J. Synthesis 1993, 290.
24. Strube R. E. In Organic Synthesis; John Wiley \& Sons, Inc.: New York, U. S. A., 1963, Coll. Vol. I, p 41.
25. Hauser, C. R.; Reynolds, G. A. J. Am. Chem. Soc. 1948, 70. 2402.

Efficient Synthetic Methods for ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$)(CO) $\mathbf{2}_{2}$ $\mathrm{Cr} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$

Jeong-Ju Cho and Joon T. Park*

Department of Chemistry,
Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
Received August 9, 1995

Since the first transition metal alkylidyne complex was reported by Fischer and coworkers in 1973,' its chemistry has been extensively investigated in various aspects, i.e., precursors for synthetic use, ${ }^{2}$ active catalysts for alkyne me-
tathesis ${ }^{3}$ and polymerization. ${ }^{4}$ We and others have employed the group-6 alkylidyne complexes, $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{M} \equiv \mathrm{CTol}[\mathrm{M}=\mathrm{Cr}$ (1). Mo (2) and W (3), $\left.\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{Tol}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right]$, as reagents for the synthesis of mixed metal cluster compounds containing group-6 metals and bridging alkylidyne ligands. ${ }^{5}$ We could prepare complexes 2 and $\mathbf{3}$ without difficulties by the reported procedures from the bromo alkylidyne complexes as shown in eq. (1). ${ }^{6}$ We, however, could obtain the chromium alkylidyne complex 1 in very low yields ($\langle 5 \%$) by
$\mathrm{Br}(\mathrm{CO})_{4} \mathrm{M} \equiv \mathrm{CT} \mathrm{OI}+\mathrm{Cp}^{-} \rightarrow \mathrm{Cp}(\mathrm{CO})_{2} \mathrm{M} \equiv \mathrm{CTol}+2 \mathrm{CO}+\mathrm{Br}^{-}$
the reported procedure which claims 25% yield for the formation of $1 .{ }^{7}$ Herein we report efficient synthetic methods of chromium alkylidyne complexes, 1 and $\mathrm{Tp}^{*}(\mathrm{CO})_{2} \mathrm{Cr} \equiv \mathrm{CTol}$ (6) $\left[\mathrm{Tp}^{*}=\right.$ hydrotris(3,5-dimethyl pyrazol-1-yl)borato], via a bis(pyridine)-substituted bromo alkylidyne complex, $\mathrm{Br}(\mathrm{CO})_{2}$ (py) $)_{2} \mathrm{Cr} \equiv \mathrm{CT}$ ol (5).

Experimental Section

General Comments. All reactions were carried out under an atmosphere of nitrogen with use of standard Schlenk techniques. Solvents were dried prior to use. ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were recorded on a Bruker AM-300 spectometer. Infrared spectra were obtained with a Bomem MB-100 FT-IR spectrophotometer. $(\mathrm{CO})_{5} \mathrm{Cr}=\mathrm{C}(\mathrm{OMe}) \mathrm{Tol}$ was prepared as described in the literature. ${ }^{8}$

Preparation of 5 from $(\mathrm{CO})_{5} \mathrm{Cr}=\mathrm{C}(\mathrm{OMe}) \mathrm{Tol}$. A petroleum ether solution (250 mL) of $(\mathrm{CO})_{5} \mathrm{Cr}=\mathrm{C}(\mathrm{OMe}) \mathrm{Tol}$ ($2.00 \mathrm{~g}, 6.13 \mathrm{mmol}$) at $-20{ }^{\circ} \mathrm{C}$ was treated with $\mathrm{BBr}_{3}(8.00$ mL of 1.0 M solution in hexane, 8.00 mmol), whereby a yellow precipitate, $\mathrm{Br}(\mathrm{CO})_{4} \mathrm{Cr} \equiv \mathrm{CTol}$ (4), formed immediately. The reaction mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ for 1.5 h . After the supernatant was decanted off, the yellow precipitate was washed with petroleum ether ($3 \times 10 \mathrm{~mL}$) at $-20^{\circ} \mathrm{C}$ and dried in vacuo. The yellow precipitate $\left[\mathrm{Br}(\mathrm{CO})_{4} \mathrm{Cr} \equiv \mathrm{CTol}\right]$ was dissolved in dichloromethane (200 mL) at $-30^{\circ} \mathrm{C}$ and then pyridine ($2.50 \mathrm{~mL}, 30.91 \mathrm{mmol}$) was added. The solution was warmed to $0{ }^{\circ} \mathrm{C}$ (ice bath), during which time the color changed to red, and stirred for 2 h . The solvent was removed to give a red solid, $\mathrm{Br}(\mathrm{CO})_{2}(\mathrm{py})_{2} \mathrm{Cr} \equiv \mathrm{CTol}$ (5). The solid was recrystallized with a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and petroleum ether to afford a red crystalline solid ($2.55 \mathrm{~g} .5 .67 \mathrm{mmol}, 93 \%$).
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$) : $\delta 9.08$ (m, 10 H , pyridine), 7.11$7.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Tol}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $25{ }^{\circ} \mathrm{C}$) : $\delta 304.2$ ($\mathrm{C}_{\text {cartyne }}$), 229.4 (2 CO), 153.2, 144.6, 139.3 , 137.3, 128.8, 128.6, 124.0 ($\mathrm{C}_{\text {ary }}$ of pyridine and Tol), 21.6 (TolCH_{3}; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) v(CO) 1998 (s), 1923 (s) cm^{-1}.

Preparation of 1 from 5. A tetrahydrofuran (THF) solution of $5(2.00 \mathrm{~g}, 4.44 \mathrm{mmol})$ was cooled to $-20^{\circ} \mathrm{C}$ and NaCp ($2.25 \mathrm{~mL}, 2.0 \mathrm{M}$ solution in THF, 4.50 mmol) was added using a gas tight syringe. After stirring at $-20{ }^{\circ} \mathrm{C}$ for 4 h , the solvent was removed and the residue was extracted with cold petroleum ether ($-20^{\circ} \mathrm{C}$) to give an orange solution. The solvent of the filtrate was removed and the resulting orange solid ($0.97 \mathrm{~g}, 3.51 \mathrm{mmol}, 79 \%$) was collected.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 7.05-7.41\left(\mathrm{AB}\right.$ pattern, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 5.12 (s, $5 \mathrm{H}, \mathrm{Cp}$), $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Tol}-\mathrm{CH}_{3}\right.$); IR (cyclohexane) $\mathrm{v}(\mathrm{CO})$ 1995 (s), 1931 (s) cm^{-1}.

Preparations of 1 and 6 from $\mathrm{Cr}\left(\mathrm{CO}_{6}\right.$. TolLi [in
situ generation from p-bromotoluene ($1.00 \mathrm{~g}, 5.85 \mathrm{mmol}$) and n-butyl lithium (2.40 mL of 2.5 M solution in hexane, 6.00 mmol) in ether] was added to a suspension of $\mathrm{Cr}(\mathrm{CO})_{6}(1.21$ $\mathrm{g}, 5.50 \mathrm{mmol}$) in diethyl ether at room temperature. The reaction mixture was stirred for 2 h and oxalyl dibromide, $\mathrm{BrC}(\mathrm{O}) \mathrm{C}(\mathrm{O}) \mathrm{Br}\left(3.00 \mathrm{~mL}\right.$ of 2.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.00$ mmol), was added at $-78{ }^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to $-40^{\circ} \mathrm{C}$ and stirred for 4 h . The solvent was removed at $-20^{\circ} \mathrm{C}$ to give a brown-yellow residue. The residue was redissolved in dichloromethane at $-40^{\circ} \mathrm{C}$ and treated with pyridine ($2.22 \mathrm{~mL}, 27.50 \mathrm{mmol}$). The color of solution changed to yellow immediately. The solution was warm to $0^{\circ} \mathrm{C}$ and stirred for 2 h during which time the yellow solution turned to dark red. The resulting red solution was reduced in volume and cold petroleum ether was added until precipitation of pyridine-substituted complex was complete. The supernatant was decanted off and the residue washed with petroleum ether three times ($3 \times 10 \mathrm{~mL}$). The solid was redissolved in cold THF and cooled to $-20^{\circ} \mathrm{C}$. Corresponding alkali salts [NaCp (3.00 mL of 2.0 M solution in THF, 6.00 mmol) and KTp^{*} ($2.01 \mathrm{~g}, 6.00 \mathrm{mmol}$)] were added and the solution was stirred for 4 h . The solvent was removed and the residue purified by column chromatography on alumina at $-20^{\circ} \mathrm{C}$. Excess pyridine was first eluted with petroleum ether. Further elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether ($1: 2$) gave an orange-red solution of 1 or a red solution of 6 , from which micro crystalline solids were obtained after removal of the solvent in vacuo at $-20^{\circ} \mathrm{C}$, respectively, ($1 ; 0.85 \mathrm{~g}, 3.08 \mathrm{mmol}, 56 \%, 6 ; 1.48 \mathrm{~g}, 2.91 \mathrm{mmol}, 53 \%$).

Compound 6: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$) : $87.56-7.10$ (AB pattern, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$) $5.78\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Tp}{ }^{*}-\mathrm{CH}\right), 5.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{T} \mathrm{p}^{*}-\mathrm{CH}\right)$, $2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Tp}^{*}-\mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Tp}^{*}-\mathrm{CH}_{3}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Tp}^{*}-\mathrm{CH}_{3}$ or $\mathrm{Tol}-\mathrm{CH}_{3}$), 2.34 (s, $3 \mathrm{H}, \mathrm{Tp}^{*}-\mathrm{CH}_{3}$ or $\mathrm{Tol}-\mathrm{CH}_{3}$), 2.33 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Tp}^{*}-\mathrm{CH}_{3}$) ; IR (cyclohexane) $\mathrm{v}(\mathrm{CO}) 1987(\mathrm{~m}), 1909$ (s) cm^{-1}.

Results and Discussion

We have successfully utilized the cyclopentadienyl-substituted molybdenum and tungsten analogous, $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{M} \equiv \mathrm{CTol}$ $\left[\mathrm{M}=\mathrm{Mo}\right.$ (2) and W (3)], for the synthesis of various MoOs_{3} and WO_{3} mixed metal cluster complexes. ${ }^{5,6,9}$ Complexes 2 and 3 have been conveniently prepared according to eq. (1) as described in the literature. ${ }^{6}$ In order to extend the scope of our cluster chemistry to presently unknown CrO_{3} clusters, we have been interested in the development of high yield synthetic method of $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Cr} \equiv \mathrm{CTol}$ (1). Complex i has been recently prepared from the reaction of $\mathrm{Br}(\mathrm{CO})_{4}$ $\mathrm{Cr} \equiv \mathrm{CTol}$ (4) and NaCp in $\mathrm{Et}_{2} \mathrm{O}$ in 25% yield and reported to be somewhat unstable in contrast with complexes 2 and 3 by Stone and coworkers. ${ }^{7}$ Later they have also reported that $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Cr} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)$ could be prepared in 80% yield via the trifluoroacetate derivative, $\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)(\mathrm{CO})_{4} \mathrm{Cr}=\mathrm{C}$ $\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)$, instead of the bromo analogue. ${ }^{10}$ We have attempted both Stone's synthetic methods to prepare complex 1, but have not been successful in our hands resulting in very low yields ($<5 \%$) of 1 .

The mean dissociation enthalpy of group-6 metal hexacarbonyl complexes increases in the order of $\mathrm{Cr}<\mathrm{Mo}<\mathrm{W}^{11}$; nevertheless, the calculated first carbonyl ligand dissociation energy of $\mathrm{M}(\mathrm{CO})_{6}$ is reported to increase in the order of
$\mathrm{Mo}<\mathrm{W}<\mathrm{Cr}^{12}$ We, therefore, thought that the carbonyl substitution is a rate-determining step with chromium derivatives and thus a starting chromium complex with more labile ligands than the carbonyl ligand is required. The bis(pyri-dine)-substituted complex, $\mathrm{Br}(\mathrm{CO})_{2}(\mathrm{py})_{2} \mathrm{Cr} \equiv \mathrm{CTol}$ (5), can be easily prepared from either $(\mathrm{CO})_{5} \mathrm{Cr}=\mathrm{C}(\mathrm{OMe}) \mathrm{Tol}$ or $\mathrm{Cr}(\mathrm{CO})_{6}$ without isolation of 4 as shown in eqs. (2) and (3). ${ }^{13}$

$$
(\mathrm{CO})_{5} \mathrm{Cr}=\mathrm{C}(\mathrm{OMe}) \mathrm{Tol} \xrightarrow{\operatorname{Br}(\mathrm{CO})_{2}(\mathrm{py})_{2} \mathrm{Cr} \equiv \mathrm{CTol}}
$$

$\mathrm{Cr}(\mathrm{CO})_{6}$
 1) TolLi 2) $\mathrm{BrC}(\mathrm{O}) \mathrm{C}(\mathrm{O}) \mathrm{Br}$ 3) Pyridine \rightarrow
 $\mathrm{Br}(\mathrm{CO})_{2}(\mathrm{py})_{2} \mathrm{Cr}=\mathrm{CTol}$

When decarbonylation of $\mathbf{4}$ is carried out at room temperature in the presence of excess (ca. 5 fold) pyridine, quantitative formation of 5 is observed. The synthetic method of eq. (3) is useful for one-pot synthesis of complex 5 from $\mathrm{Cr}(\mathrm{CO})_{6}$. The IR spectrum of 5 exhibits two $\mathrm{v}(\mathrm{CO})$ absorption bands of almost equal intensity at 1998 and $1923 \mathrm{~cm}^{-1}$ indicating a cis-arrangement of the two carbonyl ligands as was proposed for the structure of $\mathrm{Br}(\mathrm{CO})_{2}(\mathrm{py})_{2} \mathrm{Cr} \equiv \mathrm{CPh}$ ($\mathrm{Ph}=$ $\mathrm{C}_{6} \mathrm{H}_{5}$. ${ }^{\text {.4 }}$ The higher energy absorption is assigned to the symmetric A_{1} mode and the lower energy one to the asymmetric B_{1} mode due to the $C_{2 c}$ local symmetry of the two carbonyl ligands. ${ }^{15}$ The ${ }^{13} \mathrm{C}$ NMR spectrum ($\mathrm{CDCl}_{3},-30{ }^{\circ} \mathrm{C}$) of 5 shows an alkylidyne carbon resonance at $\delta 304.2$ and a single resonance at $\delta 229.4$ for the two equivalent cis-carbonyl ligands.

The reaction of 5 with NaCp indeed proceeds smoothly and in situ synthesis of $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Cr} \equiv \mathrm{CTol}$ (1) results in a high yield of either 73% from (CO$)_{5} \mathrm{Cr}=\mathrm{C}(\mathrm{OMe}) \mathrm{Tol}$ or 56% from $\mathrm{Cr}(\mathrm{CO})_{6}$. Similarly, reaction of 5 with $\mathrm{Tp}^{*} \mathrm{~K}$ results in the clean formation of $\mathrm{Tp}^{*}(\mathrm{CO})_{2} \mathrm{Cr} \equiv \mathrm{CTol}$ (6), which can be prepared as a red solid from $\mathrm{Cr}(\mathrm{CO})_{6}$ in 53% yield. The IR spectrum of 6 also reveals two absorption bands at 1909 and $1987 \mathrm{~cm}^{-1}$, which is consistent with the cis-dicarbonyl ligands. The ${ }^{1} \mathrm{H}$ NMR spectrum ($25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) of 6 displays a 2:1 pattem for the hydrogens of the pyrazol-1-yl groups, implying that the $T p^{*}$ ligand in 6 is not fluxional. However, the analogous tungsten complexes $\mathrm{Tp}(\mathrm{CO})_{2} \mathrm{~W} \equiv \mathrm{CNR}_{2}[\mathrm{Tp}=$ hydrotris(pyrazol-1-yl)borato; $\mathrm{R}=\mathrm{Me}, \mathrm{Et}$] have been reported to be fluxional at $25^{\circ}{ }^{\circ} .^{16}$ The TMEDA (tetramethylethylene diamine) derivative, $\mathrm{Br}(\mathrm{CO})_{2}(\mathrm{tmeda}) \mathrm{Cr} \equiv \mathrm{CTol}^{17}$ does not undergo reaction with NaCp revealing the chelating effect of the TMEDA ligand. Mayr and coworkers have also made use of thermal stability and coordinative lability of group-6 alkylidyne complexes with nitrogen donor ligands in various substitution reactions. ${ }^{13}$ An analogous synthetic method for half-sandwich chromium aminocarbyne complex, $\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{Cr}$ $\equiv \mathrm{CNEt}_{2}$, has been recently developed by Filippou and coworkers by using a γ-picoline derivative, $\mathrm{Br}(\mathrm{CO})_{2}(\mathrm{pic})_{2} \mathrm{Cr} \equiv$ $\mathrm{CNEt}_{2}{ }^{18}$

Acknowledgment. We are grateful to the Korea Sci-
ence and Engineering Foundation (KOSEF) for the financial support of this research. An additional support was provided through the Center for Inorganic Materials Chemistry by KOSEF.

References

1. Fischer, E. O.; Kreis, G.; Kreiter, C. G.; Müller, J.; Huttner, G.; Lorenz, H. Angew. Chem. Int. Ed. Engl. 1973, 12, 564.
2. (a) Kreissl, F. R.; Eberl, K, Uedelhofen, W. Chem. Ber. 1977, 110, 3782. (b) Schrock, R. R.; Pederson, S. F.; Churchill, M. R.; Ziller, J. W. Organometallics 1984, 3, 1574. (c) Sivavec, T. M.; Katz, T. J. Tetrahedron Lett. 1985, 26, 2159. (d) Freudenberger, J. H.; Schrock, R. R. Organometallics 1986, 5, 398.
3. Schrock, R. R. J. Onganomet. Chem. 1986, $300,249$.
4. Katz, T. J.; Ho. T. H.; Shih, N.-Y.; Stuart, V. I. W. J. Am. Chem. Soc. 1984, 106, 2659.
5. (a) Park, J. T.; Cho, J.-J.; Chun, K.-M.; Yun, S.-S. J. Organomet. Chem. 1992, 433, 295. (b) Park, J. T.; Chung, M.-K.; Chun, K.-M.; Yun, S.-S.; Kim, S. Organometallics 1992, 11, 3313. (c) Stone, F. G. A. Angew. Chem. Int. Ed. Engl. 1984, 23, 89. (d) Stone, F. G. A. Adv. Onganomet. Chem. 1990, 31, 53.
6. (a) Fischer, E. O.; Lindner, T. L.; Hutnner, G.; Friedrich, P.; Kreissl, F. R.; Besenhard, J. O. Chem. Ber. 1977, 110, 3397. (b) Uedelhoven, W.; Eberl, K.; Kreissl, F. R. Chem. Ber. 1979, 112, 3376.
7. Bermudez, M. D.; Delgado, E.; Elliot, G. P.; Tran-Huy, N. H.; Real, F. M.; Stone, F. G. A.; Winter, M. J. J. Chem. Sac., Dalton Trans. 1987, 1235.
8. Fischer, E. O.; Schwanzer, A.; Fischer, H.; Neugebauer, D.; Huttner, G. Chem. Ber. 1977, 110, 53.
9. Park. J. T.; Woo, B. W.; Chung, J.-H.; Shim, S. C.; Lee, J.-H.; Lim, S.-S.; Suh, I.-H. Organometalics 1994, 13, 3384.
10. Dossett, S. J.; Hill, A. F.; Jeffery, J. C.; Marken, F.; Sherwood, P.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1988, 2453.
11. Lewis, J.; Johnson, B. F. G. Pure Appl. Chem. 1975, 44, 43.
12. Basolo, F. Polyhedron 1990, 9, 1503.
13. McDermott, G. A.; Dorries, A. M.; Mayr, A. Organometallics 1987, 6, 925.
14. Cotton, F. A.; Schwotzer, W. Inorg. Chem. 1983, 22, 387.
15. Fischer, E. O.; Ruhs, A.; Kreissl, F. R. Chem. Ber. 1977, 110, 805.
16. Kim, H. P.; Angelici, R. J. Organometallics 1986, 5, 2489.
17. Park, J. T.; Cho, J.-J.; Suh, I.-H.; Lee, J.-H.; Lim, S.-S.; Ryu, B.-Y. Bull. Korean Chem. Soc. 1993, 14, 266.
18. Filippou, A. C.; Wanninger, K.; Mehnert, C. J. Organomet. Chem. 1993, 461, 99.
