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In order to ease the treatment of anisotropic potential when developing the variational RRKM theory, we applied 

Fano-Racah's recoupling theory to the m비tipole・multipole interaction, resulting in the great simplification of the aniso

tropic potentials. The treatment appears as a generalization of Keesom transformation in case of dipole-dipole interac

tion and provides us with great insights to the characteristics of tensorial interactions in the multipole-multipole 

interaction system.

Introduction

Recently, there have been considerable interests1 in fast, 

neutral gas phase reactions with no potential barriers along 

the reaction coordinates. The interest derives from their im

portant role in areas such as atmospheric, combustion and 

interstellar chemistry. Another source of interest is the pro

gress in the experimental methods for detecting small 

concentrations of very reactive molecules such as free radi

cals.

The reaction rate constants for these reactions have often 

been found to decrease with increasing temperature.1 Recent 

Rice Ramsperger Kassel Marcus (RRKM) variational calcula

tions2^*4 have produced the same trends and several qualita

tive explanations are available now. We also succeeded in 

solving the variational RRKM equations analytically under 

some reasonable constraints and under the long-range po

tential of type V(R, n)=7?-sA(n).5 Here Q stands for the 

angular variables and A(Q) is the anisotropic part of the 

potential. For the fast neutral gas phase reactions with no 

potential barriers, it is believed that long range potentials 

play an important role.6 Long-range potentials result from 

multipole-multipole interactions. They are tensor forces and 

have a complicated angular denpendence. Simple long-range- 

potentials that ignore the complicated angular dependence 

have thus enjoyed the frequent employ.

Long ago, Keesom7 found an interesting transformation 

that greatly simplifies the angular part of the dipole-dipole 

interactions. Let us consider two dipoles A and B. Let (&, 

4)0 and (&,妁 be their spherical polar coordinates. The z 

axis is directed toward each other. Then the angular depen

dence is givftn by 2cos0i sin&siri&cos(ei—血).By con

sidering the transformation, 2cos&=g8S|/, sin& = & =gsimp, 

Keesom shoiwed that the angular dependenceis simplified 

as geos。. Thus Keesom transformation may be used to deal 

with the anisotropic nature of the dipole-dipole interaction.

On the other hand, Fano and Racah8 discussed the tenso

rial nature of the dipole-dipole interaction in Appendix J 

of their book. The final formula surprisingly resembles Kee

som transformation. We find that the final formula is actually 

equivalent to Keesom transformation. As Fano-Racah*s app

roach can be easily generalized while Keesom transforma

tion is not, we applied Fano-Racah^ recoupling theory to 

the generalization of Keesom transformation. The result is 

surprisingly simple and takes the equivalent form of the sim

plest case of Keesom transformation. Our approach provides 

the insight to the nature of the anisotropic aspect of the 

multipole-multipole interactions which was not transparent 

in the past.

Keesom transformation and recoupling theory

Let us first summarize Fano-Racah^s treatment of dipole

dipole interaction. The dipole-dipole interaction can be writ

ten as (see Appendix B. On the m니tipole expansion9)

卩=一侖 Vi)(jJ - V2)—=(『V)(孟-V)—. (1)
r r

The last equality Allows from — V2= V^V th가 derives from 

r2. Now we can utilize the recoupling theory to recou

ple (jli-V) and (p2*V). We couple V and V together and 正 

p2 together:
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(p, • V)(盅 • V)=江卩户叫邛이w+袂啊粉

=习工呻印户邛时[叫回〕旳《»x((ii)o(ii)oi(rLW⑵

Now the recoupling constant can be related to 9J symbol，

[jl ；2 >12 ) 
(曷시如24)=[(%2+l)(2,34+D(死+D(2知+1)丁%3 h >34 h

713 ；24 j

(3)

The recoupling constant ((11)0(11)이(]块(11片 ) is obtained 

as \/2fe4-l/3. We thus obtain the following relation

卩二0寸)(口2~)丄 
T

= 3圣 V쯜+1.1工呻廿邛虬炒心邛)느

=浴[[呻畔• *心心邛时了峠 ⑷

[V⑴V口邛°)is equivalent to Laplacian and 1/r is the solution 

of the Laplacian equation. Thus A=0 term vanishes. Ev[1] 

邛d term also vanishes as is well known in vector algebra.

The reamining term can be simplified as follows

[VEg邛2)丄=—[V〉<G/，3)丁2)= - (1”3)[VX5邛2) 

T

一 ⑸

The first term becomes zero because the differential operator 

lowers the rank by one and thus the rank of VXr becomes 

zero and has no second rank tensor elements. The second 

term is simplified as

EVCUV[1]](2)A =(3/卢)0：X5邛 2)=(3/尸侦 x «]«'. (6)

The set of contrastandard components of u coincides with 

the set of harmonic functions C⑴(&D). The tensor [汀〉〈可⑵ 
has the set of contrastandard components ECC1]XCCI]][2]. 

From Eq. (J. 10) of Ref. 8,

LCc/1D X C"2 邛门=E 비2-0(的이/0)CS. (7)

The electrostatic energy becomes

件-絳 s叫也凹⑵⑵

= 绑内'叱尹邛6卩户 (8)

The last equation resembles Keesom transformation. We will 

show the equivalence between Eq. (8) and Keesom transfor

mation.

Eq. (8) reveals that the equivalence may be obtained if 

[卩1⑴C⑵]⑴ has polar coordinates (y,阪)and if we can find 

the relation between its polar coordinates and those of pi. 

Then 0 is the angle between it and 島 as seen evidently 

from Eq. (8). The relation between their polar coordinates 

can be obtained by realizing the fact that w is the angle 

that [内⑴。⑵]⑴ makes with the vector that connects the 

two dipoles. The latter is just r (see Appendix B). The set 

of contrastandard coordinates of r is just CEl2. Therefore, 

let us consider the irreducible set of rank 0,[[山⑴。⑵]⑴

邛

[[由⑴。[비⑴(沖][们

니加㈣。幻c 口邛 1 邛。](((12)11)이 (1(21)1)0)

=[由⑴[C⑵C口邛叮0

= (2()1이10)[卩『이邛 (9)

In the familar scalar product notation, Eq. (9) becomes

[小叱⑵]m.j； = v雪 J J(10)

According to Keesom transformation, g may be considered 

to be defined so that the dipole-dipole interaction energy 

is given by geos。/户.Then as the dipole-dipole interaction 

energy is given by Eq. (8), the magnitude of [由'。[口 
is given by ^gi/^/10. Eq. (10) may, accordingly, be written 

as

焉顎0州=必(麗 Jcos&wgcosGi. (11)

We thus get ^cos\|/—2cos9i. In order to find the relation 

between gsi叫 and sin01( let us consider the recouplin용 that 

yields the rank 1.

江妃也⑵][叱口邛1〕

=0[呻伊幻叱。邛1叮叫(12)11)| 1(21"〕

= 醇[妃叱房邛1〕(2이0你0)(皿)1111(21)砂1〕

= [内⑴或叮⑴(2()1이 10)((12)1111(21)1)[1], (12)

The last equality follows from the parity restriction imposed 

on 3/ symbol. The recoupling constant ((12)1111(21)幻⑴ can 

be calculated by using the relation to the 6/ symbol

(膈3lj U23)S = (— 1)"如"/(2力2+ 1)⑵23+ 1)｛比?；両

Then Eq. (12) becomes 折)[由⑴。工*]叫 The contrastan

dard set of rank 1 is related to the vector product as fol

lows

[giCl = - Xu (14)

Likewise,

[[由⑴C⑵]⑴C叫⑴=一诘6 gLhsinw. (15)

From Eqs. (12), (14), and (15), we get gsinw = sin&.

Generalization of Keesom transformation

Let us first apply Fano-Racah^ recoupling theory to the 

dipole-quadrupole interaction. As shown in Appendix B, the 

dipole-quadrupole interaction is given as

K-2 = 0 • 所2⑵ • WVE] 빠

=2工[卩'口1。2⑵:阡[v⑴邛幻：忡邛s

((11X)(22)01 (12)为(12)幻[이. (16)

The recoupling constant is obtained as



954 Bulk Korean Chem. Soc. 1995, Vol. 16, No. 10 Ckun-Woo Lee

((11)0(22)이(12片(12)幻回 = (旣+ 1) 12 2 o! .(17)

Eq. (16) becomes

*_2=焉0[妒*尹叮闵• 邛时曰虾.

Let us first manipulate the second term of the right 

side of the last equation.

_ [[网四邛* 邵后

= 2，卜마板咯]미*((11)21|1(11”)国

=z[v마Sg]미*铜珂: ； ；｝,
[网(富卩=攵叫누呼뉘  g 佶)시〔卩

=■#&<"§+ g〔讶 X 汀丁"

=号&小/舛 7cr':(1010l,0)

= •으 C ⑵(1()1 이 20).

(18)

hand

(19)

(20)

Therefore, the anisotropic part of dipole-quadrupole interac

tion is al엉。as simple as dipole-dipole interaction as Keesom 

transformation shows.

Now let us apply the same technique to quadrupole-quad* 

rupole interaction and see whether there is still only one 

kind of anisotropic interaction. As before, we will get 

following term after some recoupling:

［貝1工1B邛2］［圳因叫⑵］［虹丄

= _ ［［5工|沖］⑵何⑴으款 ］呼屈

= — ［貝皿7凹미:了(沖的(冲찌］屮

=3叵口"邛2牛(1이이 2(0〕찌四

=3(1010120)"：+心叮⑵ *2 切］叫

回沔用邛2능cs 찌圍=0何미卬强⑶찌미 m 

((11)221 1(12Wm,

忡1늫"지 s = _ 5(1020130)* 괴 G)&3,

the

(27)

(28)

(29)

Let us define solid harmonic functions Cc*]0=r*C[*3(O(|>). In 

Appendix C, we derived the following relation

[gC[妇 G)] in =、/臥2k+l)3 -响. (21)

By using Eq. (21), we obtain

. 卜信)C⑵찌七-#(1020130)C。% (22)

Then

[[gq 邛幻牙=_ 为\/을 52纣 1 3｝(i020|30)C「3&3,(23) 

and

[[BP⑴丁旳口牛『=_ 土对흘5#； ； 圳102이 30)C⑶疆

(24)

As a whole, the dipole-quadrupole interaction becomes

K—2=0 •啲2。〕. [35 邛2 牛

邛 3” 以｛一为 y嶷｛； 12|

(102이 30)C ⑶｝

= -^[Q2rag[1]][31-CC3]. (25)

Finally, we may transform the equation into a form of scalar 

product of the multipole moment with the field at that posi

tion generated by another multipole.

*2= - 絳[。2⑵<坤叮口】.『娉((21)33|(23)11)0

= -」麥\/%간"]5俨. (26)

［［寸心心邛2늫(尹(지匡3= -5(1020130)((11)2211(12)沪］ 

何口印⑶찌 叫

卜心넣C⑶찌囚 = ［二7읗堕 C⑶(分 + 繆C⑵찌m

=如-7(- 此岫姬。伽)C*G) + V®%).

T

(30)

(31)

It is straightforward to show that only k=4 term survives.

[|、仲3邛幻[早1]3邛2邛7丄 
T

=一 5(1020130)((11)2211(12)3)C4]( - 7)(1030140。的志.(32)

尸

Here again only one type of irreducible tensor mediates the 

interaction between two multipoles. Only maximum rank an

isotropy compatible with triangular inequality is allowed.

Let us do the same thing for one more particular term, 

octapole-quadrupole interaction. Then, we will show that the 

same thing holds for any multipole-multipole interaction.

[[gvEB 邛幻貝[口字叮2邛妇丄

二：—[[v⑴3回邛mg⑴。賈)]띠貫

= 3(1이이 20)[帅收〔因叮능C⑵(沖〕.
(33)

If we recouple the last term, we have the following term 

except constant factor,

[[V⑴V 口邛订侑c⑵]印邛妇
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= - 臥102이 30)[[g7E]E*⑶ g)]%，3

= - 5(102 이 30)Z兀 너C ⑶ G) 丁叮%，勺

= - 5(1020130)21叩。〕[ - 号(103이 40X”&) 邛%，血

= (-5)(-7)(1020130)(10301c*]. (34)

As we will show in a general way, the last term is the irre

ducible tensorial set. Thus in this case, too, the anisotropy 

of the space that mediates the interaction between two mul

tipoles is described by one irreducible tensor, the highest 

rank among compatible ones with triangular inequalities.

Fano-Racah^ recoupling technique can be applied to gen

eral multipole-multipole interaction. First we notice that

[应匚财妃1 .[沖 V⑴…V⑴加] 
知L L

叮'妇.[[v⑴v⑴…v⑴]血[功工寸⑴…v⑴]住2】]〔罚

(35)

Keesom transformation and its generalization is based on 

the following chain:

으H 읗也 읗也읔 X... (36)

Using the above chain, the second term in the sum of Eq. 

(35) is reduced to the irreducible tensor. This can be proved 

as Allows:

vr cm(r)

= -(处+1) 읗@ c「%)+乂警产 c” 响

= - X(2* +1)( -1)2 顷 2(1(岫))-읗卑

+籍終。CI屹)

=_(一户物+])(_i)je( .匕 y)으拌 

_(-)*+物+1)\顽혀 *%+(：)°謨"_
+ 商亦刁■으壬箏-= - 而-+1物日)写箏 -(37)

Conclusion

In this paper, we have seen that anisotropy of the space 

th가 mediates the interaction of two multipoles should be 

of irreducible tensor type whose rank is the highest allowed 

for the system. The absense of the lower ani용otropies is 

one of characteristics of Coulomb interaction. Keesom trans

formation is derived as its simplest case. It might be an 

interesting application to apply the techniques developed in 

this paper to the potentials whose forms are not given by 

multipole-multipole interactions.

Appendix A. On the standardization

When we use the formulas in Fano-Racah*s book, we have 

to be careful on the standardization. Many formulas derived 

there are specific to the standard 욚ets defined there. Unfor

tunately, their standard sets are not the one of people's 

choice. Condon-Shortley^s one is more widely adopted. Also, 

either this kind of problem seems not emphasized much or 

not well recognized. Let us first describe the difference bet

ween Condon-Shortley and Fano-Racah convention. The for

mulas that depend on the standardization and thus need 

care when used with the usual spherical harmonics will be 

described later.

Both convention are same in that Jx and Jz operators are 

taken as real and Jy imaginary. With such choice the phases 

of the eigenfunctions of Jz are still at our disposal. In Con

don-Shortley convention phases are determined by

L+Yt„ 二伽)Q+師+1. (38)

Let us denote the undetermined phase of the spherical har

monics by a허, namely

K，"=a”[ (牛(:쓰頌) ]"力*(8肅)产气 (39)

L 471(，十"JJ! J

If we apply E+=液神(。/如+让(海(。/孙))on Ytm and make use 

of the recurrence relation among R"*, then we get

L+Yim =帀貰~； + +1. (40)

Condon-Shortley phase dm thus satisfies

一一으끄-= 1. (41)
(如+1

One solution may be(* = ( T)허, which was the actual choice 

of Condon-Shortley.

Fano-Racah used Dy(n) for the unitary matrix U that trans

forms the cogredient sets into contragredent ones in order 

to fix the phases. As Fano-Racah^ book does not show ex

plicitly why they imiltiply i to the Condon-Shortle/s spheri

cal harmonics to make them contrastandard sets, we will 

give the derivation of it here.

For the real set, U matrix is 1. For the linear substitution 

A that transforms the real set into the spherical harmonics, 

U changes into

Lr^UA-^A^A-K (42)

Now for the conventional spherical harmonics

Yi± 용in8砰‘气

the substitution A is obtained by the following relation

L [厂念寿十气(Yu\ 

Yw l= 0 0 1 I 珏卜財 Y]y

\Yi~J ^~~^2 슈 d'd \ yJ
(44)
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Then U is obtained as

(45)

This IT is different from Z\(n). Now we wzmt substitution 

cA so that

/ 0 0 1 '

[广=(广)气尸=0 -1 0
' 1 0 0 ‘

(46)

Two solutions i, —i of c are possible. The former is the 

choice of the Fano-Racah^ book. Thus in order to have U 

as the rotation matrix about y axis, the standard set of spher

ical harmonics should differ from the Condon-Shortly one 

by a multiplication constant 礼

In Fano-Racah^ book, formulas that contain U matrix are 

subject to the choice of the sets. For example, the Allowing 

formula

習有[洲砂伊>=瑚•时， (47)

should be modified for the Condon-shortley sets as

(一 1)V2，+ 1以。伊邛》="•". (48)

The reason for the change is that the right hand side of 

the above equationis invariant under substitution while the 

left hand side of the equation suffers from change under 

the substitution c(=?). Let the set be related to the Con- 

don-Shortley set aw by a^=ca^. Then [a^w](0) becomes 

pw](0). On the other hand, ⑰们 should be invariant under 

substitution by definition. Another nontrivial example occurs 

when we try to relate RW伊邛° to the vector product. Here, 

the source of the problem is the same as above. The vector 

product is invariant under any substitution while

is not Thus we encounter the imaginary number in such 

a connection when the Condon-Shortley sets are used: 

[a⑴0⑴]⑴=—f/v^xXy). If Fano-Racah*s standard sets are 

used, the imaginary number does not appear.

Appendix B. On the multipole expansion

Let us consider the electrostatic potential energy between 

two charge distributions pi and p2- Here it is assumed that 

two charge distributions are far apart. The electrostatic po

tential is given by

件f p摩呼)必以 (49)

?i and X2 are vectors measured from the origin 0. Let us 

consider the vectors and r2 measured from the centers 

of each fragment. If ?io and ?2o are the vectors of the centers 

of fragments measured from the origin O, then 云=再+云() 

and 亍2=為+标 Since two charge distributions are far apart, 

we can make a Taylor expansion:

1 1 _ 1 丄e 1 I 一，
x ~~ 厅2—先十기 ~ r ri 1 伪一九十귀 >矿=侦=。"

v?■戸—1 ，->| I . . + , • • — ~+?rv— j須V丄 + ….(50) 

1方一1+시、1‘=华 =o r r r

Then the electrostatic potential may be rewritten as

v=‘半+0(甫・柘)¥“+冬2031)++(日「研)(萨吩9・1

+ [ J( - 1兴例• W% , Vy2pGi)p2&2)击宙J j + ….(51)

The general term has a rather inconvenient form. The pref

errable form maybe the following

V]*1)A/<*2,<VV"-VP2). (52)

Let us show that this is the case for 加=2 and k2=l:

卩2—1 늬짜'(小为例乂찌 (53)

We now want to apply Fano-Racah's recoupiing theory. Ac

cording to this theory, we first rewrite the scalar products 

of two vectors to the zeroth-rank irreducible tensors of direct 

products of two spherical tensors. Namely, rvV=y/3[r^ 

V⑴]關.Beware that this relation depends on the convention 

of the sets. In particular, it only holds for the sets of Fano- 

Racah convention. On this understanding, let us first simplify 

the integrand of the first integral of V2-i-

备^)61・朽=浴山叫『职・|、仲3职. (54)

As equals Ci[1]

I由⑴”职늬c ⑴

=P+i(i()l 이湘)G 後)= 一击&。+쓰 GE%.

(55)

Then by using the fact that [3W工邛이§ = 0

J 伝 - V)(?! . V)p(穴)姑 = 峥(何2偏)찌 ・ [vgE] 쁘

= 씅。2⑴ ・ [早时⑴]빠, (56)

where the quadrupole moment is defined as Qi⑵=JG⑵pGi) 

dri. As a wh이e,

丫2-1=(0⑵ •['지]巩叫⑵)・(盅^)+. (57)

Appendix C. Action of gradient operator on 
solid harmonics

The result of the application of a gradient operator on 

a solid harminic can be obtained in analytic forms by making 

use of the following definition of the solid harmonic:

%?；=孕>成炊〕, (58)

where a is the vector of length zero defined as
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a-(-z+2^z-2t 一沧+2+z-2), 2z+z-), (59)

and g(z) is defined as

z+k^qz_k~<l
心沪v旋奇无二洌, (60)

If we differentiate both sides of Eq. (58), we obtain

f 席二;=SKfe)VC[«. (61)
£> £/ \K L) ♦ q

If we make the coefficients of <|)^(2)of Eq. (61) zero, the 

following relations are obtained:

W研=/火近(技 T) c"],
£t

尸〕= —v缶二衣"I떠 f,

VR方=\/地%+D Q*. (62)

On the other hand, by the well known vector coupling theory, 

V/ECj妇 can be decomposed into irreducible products [V⑴ 

with the expansion coefficients giv은n by the Wig

ner coefficients as follows:

v/口 】c普=IKq+g 이VWY*% 朝〉

=(i心小-ia+j)[gc [妇丄오烈. (63)

From Eqs. (62) and (63), we obtain Eq, (21).
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Generalized Multichannel Quantum Defect theory (MQDT) was implemented to the vibrational predissociation of triato

mic van der Waals molecules in the previous paper [Bull. Korean Chem. Soc, 12, 228 (1991)1 Implementation was 

limited to the calculation of the scattering matrix. It is now extended to the calculation of the predissociation spectra 

and the final rotational distribution of the photofragment. The comparison of the results with those obtained by other 

methods, such as Golden-rule type calculation, infinite order sudden approximation (IOS), and close-coupling method, 

shows that the implementation is successful despite the fact that transition dipole moments show more energy depen

dence than other quantum defect parameters. Examination of the short-range channel basis functions shows that 

they resemble angle-like functions and provide the validity of the IOS approximation. Besides the validity of the 

latter, only a few angles are found to play the major role in photodissociation. In addition to the implementation 

of MQDT, more progress in MQDT itself is made and reported here.

Introduction

Photodissociation provides a wealth of information on mo

lecular dissociation dynamics, as it may be visualized as a 

half collision process. Traditionally the total dissociation 

cross sections as functions of the photon energies were mea

sured. However, in an increasing number of recent experi

ments, final state distributions of the photofragments have 

been measured. Such experiments were made possible by 

the availability of powerful light sources and by the develop

ment of efficient detection methods like laser induced fluore

scence or resonance enhanced multiphoton ionization, and 

so on. Reliable intermolecular potentials have been deduced 

from such sophisticated experimental data. Details of photo-


