The Pure and Applied Mathematics 2 (1995), No 2, pp. 97-101 J. Korea Soc. of Math. Edu. (Series B)

PROPER RATIONAL MAP IN THE PLANE

Moon Ja Jeong

In [6], the author studied the property of the Szegő kernel and had a result that if Ω is a smoothly bounded domain in $\mathbb C$ and the Szegő kernel associated with Ω is rational, then any proper holomorphic map from Ω to the unit disc U is rational. It leads to the study of the proper rational map of Ω to U. In this note, first we simplify the proof of the above result and prove an existence theorem of a proper rational map. Before we proceed to state our result, we must recall some preliminary facts.

Let $L^2(b\Omega) = \{\phi : \int_{b\Omega} |\phi|^2 < \infty\}$ and $H^2(b\Omega)$ be the closure of $A^{\infty}(b\Omega)$ in $L^2(b\Omega)$ where $A^{\infty}(b\Omega)$ is the functions on $b\Omega$ which are boundary values of functions in $A^{\infty}(\Omega)$.

The unique orthogonal projection $S:L^2(b\Omega)\to H^2(b\Omega)$ is called the Szegő projection and represented by the Szegő kernel S(z,w) via

$$S\phi(z)=\int_{b\Omega}S(z,w)\phi(w)ds_{m{w}}$$

for $\phi \in L^2(b\Omega)$ and $z \in \Omega$ (see [2; p.22]).

A continuous map $f: \Omega_1 \to \Omega_2$ between domains is called proper if $f^{-1}(K)$ is a compact subset of Ω_1 whenever K is a compact subset of Ω_2 . The compactness of $f^{-1}(K)$ for every compact $K \subset \Omega_2$ is equivalent to the following requirement: If $\{z_k\}$ is a sequence in Ω_1 that tends to $b\Omega_1$, then the sequence $\{f(z_k)\}$ tends to $b\Omega_2$. Also, we note that if f extends continuously up to the boundary, then the

The research was partially supported by KOSEF Grant #951-0102-008-2...

condition that f be proper is equivalent to the condition that $f(b\Omega_1) \subset b\Omega_2$. It is easy to check that biholomorphic mappings are proper.

Suppose Ω_1 and Ω_2 are domains in \mathbb{C} and $f:\Omega_1\to\Omega_2$ is proper holomorphic. Let #(w) denote the number of points in the set $f^{-1}(w)$ for $w\in\Omega_2$. Then there is an integer m (the multiplicity of f) such that

$$\#(w) = m$$
 for every regular value of f
 $\#(w) < m$ for every critical value of f

(see [7; p.303]).

A rational function f is defined to be a quotient of two polynomials P and Q such that f = P/Q. The finite Blaschke products

$$B(z) = c \prod_{i=1}^{m} \frac{\alpha_i - z}{1 - \overline{\alpha}_i z} \qquad (|\alpha_i| < 1, |c| = 1)$$

are examples of proper holomorphic maps of the unit disc U in \mathbb{C} onto itself. We note that these maps are all possible proper holomorphic self-maps of the unit disc U. Indeed, if f is any proper holomorphic self-map of U, then $f \in C^{\infty}(\overline{U})$ (see [2; p.65]). So, by the definition of proper map, f maps the boundary bU of U to bU and $f^{-1}(0)$ is compact in U. Note that $f^{-1}(0)$ is a discrete finite set in U. Let $f^{-1}(0) = \{\alpha_1, \ldots, \alpha_n\}$ where each $\alpha_i \in U$. Denote $P(z) = \prod_{i=1}^m (\alpha_i - z)/(1 - \overline{\alpha}_i z)$. Then, P is an automorphism of U and maps bU onto bU. It is enough to show that f = cP where |c| = 1. Since f/P and P/f has removable singularities, they are holomorphic in U. By the maximum principle, |f/P| and |P/f| have the maximum 1 on bU. It implies that |f/P| = 1 in U. Hence, |f| = |P| leads to the desired conclusion.

Thus the proper maps of the disc in \mathbb{C} onto itself are easy to classify. They are all rational functions that extend holomorphically past the disc. On the other hand, Alexander [1] proved that proper maps from the unit ball B_n in \mathbb{C}^n to itself are necessarily automorphisms when $n \geq 2$. D'Angelo [4] classified all proper polynomial maps between balls. Now, we concentrate on proper maps from bounded domains in \mathbb{C} to the unit disc U in \mathbb{C} .

Lemma 1. Let Ω_1 be a smoothly bounded, n-connected domain in \mathbb{C} and Ω_2 be a smoothly bounded, simply-connected domain in \mathbb{C} . Suppose $f:\Omega_1 \to \Omega_2$ is a proper holomorphic mapping of multiplicity m. Let F_1, \ldots, F_m represent f^{-1} locally. Then, the Szegő kernels transform according to

$$\sum_{i=1}^{m} S_1(z, F_i(w))^2 \overline{F_i'(w)} = f'(z) S_2(f(z), w)^2$$

for all $z \in \Omega_1$ and $w \in \Omega_2$.

Proof. See [6]. \square

Theorem 2. Let Ω_1 be a smoothly bounded domain in \mathbb{C} whose associated Szegő kernel is rational and Ω_2 be the unit disc in \mathbb{C} . Then any proper holomorphic mapping $f: \Omega_1 \to \Omega_2$ is rational.

Proof. Let m be the order of f and F_1, \ldots, F_m denote the m local inverses to f. By Lemma 1,

$$\sum_{k=1}^{m} S_1(z, F_i(w))^2 \overline{F_i'(w)} = f'(z) S_2(f(z), w)^2.$$

Since $S_2(f(z), w) = 1/2\pi(1 - f(z)\bar{w}),$

$$\sum_{k=1}^{m} S_1(z, F_i(w))^2 \overline{F_i'(w)} = \frac{f'(z)}{4\pi^2 (1 - f(z)\bar{w})^2}.$$
 (1)

By setting w = 0 in (1),

$$\sum_{i=1}^{m} S_1(z, F_i(0))^2 \overline{F_i'(0)} = f'(z)/4\pi^2$$

and hence f'(z) is a rational function of z. By differentiating the transformation formula (1) for the Szegő kernels with respect to \bar{w} and setting w = 0,

$$\sum_{i=1}^{m} 2S_1(z, F_i(0)) \overline{F_i'(0)}^2 + S_1(z, F_i(0))^2 \overline{F_i'(w)} = \frac{1}{2\pi^2} f'(z) f(z).$$

Since $S_1(\cdot,\cdot)$ is rational, f'(z)f(z) is rational. Hence f(z)=f(z)f'(z)/f(z)' is rational. \square

Remark. Recently Bell [3] used this result to prove the Szegő kernel associated to the multiply connected domain is not rational.

Theorem 3. For some smoothly bounded domain Ω in \mathbb{C} , there exists a proper rational map of Ω onto the unit disc U.

Proof. Take a polynomial p(z) with distinct zeros z_1, \ldots, z_n . Take a sufficiently small $\epsilon > 0$ so that the set $\{z \in \mathbb{C} : |p(z)| = \epsilon\}$ has n disjoint components $\{C_i\}_{i=1}^n$ where C_i is smooth, non-intersecting simple closed curve surrounding z_i , respectively. Without loss of generality, let $z_1 = 0$ and $\epsilon = 1$. Let $\Omega = \{z \in \mathbb{C} : |p(1/z)| > 1\}$. It is a smoothly bounded n-connected domain in \mathbb{C} with $b\Omega = \bigcup_{i=1}^n \widetilde{C}_i$ where 1/z maps C_i to \widetilde{C}_i and vice versa for $1 \leq i \leq n$. Here \widetilde{C}_1 is the outer boundary of Ω . The map f(z) = 1/p(1/z) is a proper rational map of Ω onto U since f maps $b\Omega$ onto bU. \square

We conjecture that for given smoothly bounded multiply-connected domain Ω in \mathbb{C} , there exists a proper holomorphic map of Ω onto the unit disc U which is not rational. The following theorem of Grunsky [5; p.133] may be helpful for the proof:

Let Ω denote a smoothly bounded *n*-connected domain in \mathbb{C} with boundary $b\Omega$ and let $z_i \in C_i$ for $1 \leq i \leq n$ where $b\Omega = \bigcup_{i=1}^n C_i$. Then there exists a proper holomorphic map f of Ω onto the right half plane with multiplicity n and $f(z) \to \infty$ for $z \to z_i$. This function is unique up to a positive multiplicative and an imaginary additive constant.

REFERENCES

- 1. H. Alexander, Proper holomorphic mappings in \mathbb{C}^n , Indiana Univ. Math. J. 26 (1977), 137-146.
- 2. S. Bell, The Cauchy Transform, Potential Theory, and Conformal Mapping, CRC Press, Boca Raton, Florida, 1992.
- 3. _____, Complexity of the classical kernel functions of potential theory jour in preparation.
- 4. J. D'Angelo, Proper polynomial mappings between balls, Duke Math J. 57 (1988), 211-219.

- 5. H. Grunsky, Lectures on Theory of Functions in multiply connected domains, Vandenhoeck & Ruprecht, Göttingen, 1978.
- 6. M. Jeong, The Szegő kernel and the rational proper mappings between planar domains, Complex Variables Theory Appl 23 (1993), 157-162.
- 7. W. Rudin, Function theory in the Unit ball of \mathbb{C}^n , Springer-Verlag, New York, 1980.

Department of Mathematics, The University of Suwon, Suwon 445-743