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BASIS FOR ALMOST LINEAR SPACES

SANG HAN LEE

ABSTRACT. In this paper, we introduce the almost linear spaces, a generalization of
linear spaces. We prove that if the almost linear space X has a finite basis then, as
in the case of a linear space, the cardinality of bases for the almost linear space X is
unique. In the case X = Wx + Vx, we prove that B’ = {z{,...,z,} is a basis for the
algebraic dual X# of X if B = {21, ...,z } is a basis for the almost linear space X.
And we have an example X (# Wx + Vx) which has no such a basis.

1. Introduction

An almost linear space (als) is a set X together with two mappingss: X xX — X
and m : R x X — X satisfying the conditions (L;)— (Ls) given below. For z,y € X
and A € R we denote s(z,y) by = + y and m(\,z) by Az, when these will not
lead to misunderstandings. Let z,y,2 € X and \,p € R. (L) z+(y+2) =
(z 4+ y)+2; (L) ¢ +y =y + z; (L) There exists an element 0 € X such that z +
0 =z foreachz € X; (Lg) 1z = z; (Ls) Mz +y) = Az + Ay; (Lg) Oz = O;
(L7) Mpz) = (Ap)z; (Ls) (A+p)z =z + px for A >0, p > 0.

We denote —1z by —z, if there is no confusion likely, and in the sequel ¢ — y
means = + (—y).

Note that (A+ p)z = Az + pz for every scalars A, p € R in linear space, and z —z
need not be equal to zero for every r in almost linear space.

If X is an als then we have: (1) The element 0 in (L3) is unique. (2) A0 = 0 for
each A € R. (3) Foreachz € X and A <0, p <0, (A+p)z = Az + pz. (4) If
z € X is such that z — ¢ = 0, then (A + p)z = Az + pz for all A, p € R.
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A nonempty subset Y of an als X is called an almost linear subspace of X, if
for each y1,y2 € Y and A € R, s(y1,y2) € Y and m(A\, 1) € Y. An almost linear
subspace Y of X is called a linear subspaceof X if s : Y XY - Yandm:RxY - Y
satisfy all the axioms of a linear space.

For an als X we introduce the following two sets;
Vx={z € X:z -z =0}, (1.1)

Wx={z€X:z2=—z}. (1.2)

Then, we have the following properties: (1) The set Vx is a linear subspace of
X, and it is the largest one. (2) The set Wx is an almost linear subspace of X
and Wx = {z —z : 2z € X}. (3) The als X is a linear space < Vx = X <
Wx = {0}, and Vx N Wx = {0}.

All notions and notations used and not defined in this paper can be found in 2],
[3], and [4].

2. Basis For The Almost Linear Space

A subset B of the als X is called a basis for X if for each £ € X — {0} there
exist unique sets {b1,bs,...,b,} C B, {A1,A2,..., A\n} C R — {0} (n depending on x)

such that z = }_ A;b;, where A; > 0 for b; € Vx. Clearly, if B is a basis for X then
1=1
0¢ B.
In contrast to the case of a ls, there exists als which has no basis.

Examples 2.1. (1) Let X = {z € R : ¢ > 0}. Define s(z,y) = maz{z,y} and
m(A,z) = ¢ for A # 0, m(0,z) = 0. The element 0 € X is 0 € R. Then X is an als.
We have Vx = {0} and Wx = X. Furthermore, X has no basis[2].

(2) Let X = {[a,b] C R : a < b}. Define s(A,B) = {a+b:a€ A, be B}
and m(A,A) = {da:a € A} for A,B € X, A € R. Then X is an als. We have
Vx ={{a} € X :a € R} and Wx = {[—a,a] € X : a > 0}. And B = {[-1,1],{1}}
is a basis for X. Also, Y = {[a,b] € X : ¢ £0, b > 0} is an almost linear subspace
of X. And By = {[~1,0],[0,1]} is a basis for Y.
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Definition 2.2. Let B = {by,...,b,} is a subset of the als X. If the equation

/\lbl + ..+ Anbn = ll'lbl + ...+ Nnbn (Ai,ui > 0 'Lf bi ¢ VX)

has the only solution
A1 =1, A2 = U250 An = fin,

then B is called an almost linearly independent set. If there are other solutions,
then B is called an almost linearly dependent set.

Definition 2.3. If B = {b1,...,b,} is a subset of the als X and X = {>_ A:b;|\;i €

=1

n
R )i >0if b; ¢ Vx}, then we say that B almost span X and ) A;b; is an almost
=1
linear combination of b, bo, ..., by.
Proposition 2.4. Let B = {b1,...,b,} is a subset of the als X. Then B is a basis
for X if and only B is an almost linearly independent set and B almost span X.

Proof. Assume that B is an almost linearly independent set and B almost span X.
Given z € X — {0}. Since B almost span X, there exist ay,az,...,aqn € R where
a; > 0if b; € Vx such that ¢ = a1by + azbs + ... + apbyp. Suppose = has another
representation, by, £ = 810y + B2bs + ... + Bnbn, where §; > 0 if b; € Vx. Then

a1by + agbs + ... + anb, = ,Hlbl + ﬂ2b2 +..+ ﬂnbn-

Since B is an almost linearly independent set, a; = 834, 1 = 1,2,...,n. Therefore B
is a basis for X.

To prove the converse, let B be a basis for the als X. Clearly, B almost span
X. We must show that B is an almost linearly independent set. It is sufficient to
show that if A\1b; + ... + A\pb, = 0 then Ay = ... = A\, = 0. Indeed, suppose A # 0,
then A1by + ... + 2A1bg + ... + Anbn = Arbg. This contradicts, since B is a basis and
Akbr # 0. Thus Ax = 0. Therefore B is an almost linearly independent set.

Theorem 2.5{2]. Let B be a basis of the als X. Then there exists a basis B' of
X with the property that for each ' € B' — Vx we have —b' € B’ — Vx. Moreover
card(B — Vx) = card(B' — Vx).

Proposition 2.6[2]. If the als X has a basis then Wx has a basis.
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Proposition 2.7. Let X be an als with a basis. Then
(1) The relationsz +y =z + 2, z,y,2 € X imply that y = z,

(2) The relations wy + v; = we + v2, w; € Wx, v; € Vx, ¢ = 1,2 imply that
wy = w2 and v, = vy,

Proof. (1) Let B be a basis for the als X and let ¢ = Y aib;, y = Y Bibi, 2 =
i=1 i=1

E ~:b; where b; € B and d,‘,ﬁ,’,’)’,‘ >0ifb; € Vx,:=1,2,...,n. Then
i=1

n

T+y= Z a;b; + iﬂ,‘b,‘ = Z(ai + Bi)bi,
i=1

1=1 i=1

n n n
T+ z= Zaibi + Z’Y:‘bi = Z(ai + i )bi.
i=1

1=1 =1

Thusz+y =2+ 2z implies a; + B = a; +7i 1 = 1,2,...,n since B is a basis. Hence
y=zifet+y=z+z.

(2) Let wy + vy = wa + vz, where wy,wy € Wx, vi,v2 € Vx. Then w; =
wq +('01 —'01) = (w1 +’l)1)—’01 = ('LU2 +1)2)'—’Ul = wg + vy —vy. Also, w1 = —wy =
—wy — Vg + v1 = wz — V2 + v1. Hence 2w; = 2w;, so w; = we. And v; = v, by (1).

In Examples-2.1(2), X = Wx + Vx and B = {[-1,1],{1}} is a basis for the als
X = Wx + Vx. Furthermore, {[—1,1]} is a basis for Wx and {{1}} is a basis for
Vx. In general, we have the following result.

Proposition 2.8. Let X be an als with basis and X = Wx + Vx. Then we can
choose a basis B = By U B; for X, where B; is a basis for Wx and B, is a basis
for Vx.

Proof. If X has a basis then Wx has a basis by Proposition 2.6. Let By be a basis
for Wx and B, a basis for the linear space Vx. By Proposition 2.7(2), B = B; U B,
is a basis for Wx + Vx.

Lemma 2.9. If B = {b;,b2,...,b,} is a basis for the almost linear space X, then
every set with more than n elements in X is an almost linearly dependent.
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Proof. Let B' = {vy,vs,...,un} be any set of m elements in X, where m > n.
Since B is a basis, each v; can be expressed as an almost linear combination of the
elements in B, say,

v; = A1y + Agibs + .o 4 Anibn (2.1)
where Aj; > 0if b; & Vx, ¢ = 1,2,...,m. Consider the following equation
a1v1 + agvg + ... + AU, = f1v; + Bavz + ... + ﬂmvm. (22)

To show that B’ is an almost linearly dependent, it is sufficient to show that there
exists nonnegative nontrivial solution of (2.2).
We may assume that a;, §; are nonnegative, ¢ = 1,2,...,m. Then we have

(al)\jl + ag)\jz + ...+ am)\jm)bj = al)\jlbj + ag/\j2bj + ...+ am/\jmbj,

(B1dj1 + B2Xj2 + .. + BmAjm)bj = B1Ajibj + Barjzbj + ... + PmAjmb;

since Aji > 0if b; &€ Vx, 1 =1,2,...,m. Using the equations in (2.1), we can rewrite
(2.2) as

i(al,\jl +az)js + ... + OmAjm )b; = Zn:(ﬂlz\ﬂ + B2 rjo + oo + BmAjm)bj.
j=1 j=1
Since B is a basis for the als X, we have
a1Aj1 +a2djz + .o F amdAjm = Bidj1 + B Aja + oo+ BmAjm (2.3)
where j = 1,2,...,n. We can rewrite (2.3) as
Aj1z1 + Ajeza + oo + AjmTm =0 (2.4)
where z; = a; — fi, : = 1,2,...,m, j = 1,2,...,n. Since (2.4) has more unknowns

than equations, there exists a nontrivial solution of (2.4). Hence a # S for some
k. Therefore B’ is an almost linearly dependent.
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Theorem 2.10. If B = {b,b,,...,b,} and B' = {b},b5,...,b,,} are two bases for
the als X, then n = m.

Proof. Since B is a basis and B’ is an almost linearly independent set, Lemma
2.9 implies that m < n. Similarly, since B’ is a basis and B is an almost linearly
independent, we also have n < m. Therefore m = n.

3. Basis For The Algebraic Dual Space Of ALS

Let X be an als. A functional f : X — R is called an almost linear functional if
the conditions (3.1) — (3.3) are satisfied.

flz+y)=f(z) + f(y) (z,y€X) (3.1)
f(hz) = Mf(e) (A20, z€X) (32)
fw)>0 (weWy) (3.3)

The functional f : X — R is called a linear functional on X if it satisfies (3.1),
and (3.2) for each A € R. Then (3.3) is also satisfied.

Let X# be the set of all almost linear functionals defined on the als X. We define
two operations s : X# x X# - X# and m: R x X# — X# as follows:

s(fl,fz)(m)=f1(x)+f2(x), for f17f2 EX#’

m(\, f)(z) = fOz), for A eR, feX#,

for all z € X. Clearly, s(fi, f) € X¥, m(}, f) € X#, and s, m satisfy (L;) —(Ls)
with 0 € X# being the functional which is 0 at each ¢ € X. Therefore X# is an
als. X# is called the algebraic dual space of the als X.

We denote s(fi, f2) by fi + f2 and m(A, f) by Ao f.

Let f be an almost linear functional on als X. Then we have: (1) If z € Vx then
fOz) = Af(z) for \e€R. (2) f € Vxs# < fislinearon X <= —~lof = —f
<= flwxy =0.
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Let als X have a basis. Then, we can choose a basis B such that —z € B — Vx
if £ € B — Vx by Theorem 2.5. For each z; € B we can define functional

zi: X > R (3.4)
by zi(z) = Ai, forz = ) Ajz; € X wherez; € Band A\; > 0if ; € Vx.
i=1

Proposition 3.1. The functional ! defined by (3.4) is an almost linear functional
on the als X. In particular, if z; € Vx then z} € Vx4, and if z; € Wx then
:L'I' € Wx#.

Proof. Clearly, zi(z + y) = () + z}(y) and z}(Az) = Azj(x) for z,y € X, A > 0.
We show that z!(w) > 0 for w € Wx. For each z; € B, put y; = z; if z; € Vx

and y; = —z; if z; € Vx. Given ) Ajz; € X where \; > 0if z; & Vx, —z =
=1
n n
> —Aizi = ), piyi where u; = \; if 2; € Vx and p; = =\ if o; € Vx.
=1 =1
k n
IFwe Wx thenw = 3, A\jz; where \; >0, z; € Vx. Indeed, if z = ) \iz; €
j=1 =1

n n
Wx then Y \iz; = ) piy; since ¢ = —z. If z; € Vx then z; = y;. So, \i = y;
=1 i=1
since the representation is unique. But p; = —A; since z; € Vx. Thus A; = 0 if
z; € Vx. Hence z!(w) > 0 for w € Wx. Therefore z} € X#. Also,

(a4 (=1 0 2)(30 Njes) = 2l(30 Asm) + 24 wiw) = M i = A= X =0
j=1 i=1

j=1

if ¢; € Vx.

Hence z} € Vx# if z; € Vx. And, if z; € Wx then z; = —z; = y; and \; = u;.
So we have

—Lozl(Y_ Nz;) =) —Njzs) = i) piys) = pi = M = zi(>_ Ajz;j).
J=1 j=1 j=1 i=1

Hence =} € Wx# if z; € Wx.
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Theorem 3.2. Let X be an als and X = Wx + Vx. If B = {z,,...,2,} is a basis
for the als X then B’ = {z1,...,2/} given by (3.4) is a basis for the algebraic dual
X# of X.

Proof. B'is an almost linearly independent set since

Za, occ,(w) Zﬂi ozi(z) (v € X)

i=1 i=1

with z = z; gives

Z i(aizj) = Zat o zi(z;) Zﬂ: o z3(z;) Z zi(Biz;) = Bj,

=1 i=1 i=1 =1

sothat a; =6, 1=1,2,...,n

We show that every ' € X# can be represented as an almost linear combination
of the elements of B'. For given z' € X#. Write «'(z;) = «; for each z; € B. If
z; € Vx then z; € Wx, so a; > 0. Since ' is an almost linear functional on X

n
a'(z) = Z Ajoj
j=1
for every 2 = ) A\jz; € X where A\j > 0if z; ¢ Vx. On the other hand, by (3.4)
i=1

we obtain
w;(:c) = :’7;()\1-’171 + .t Anza) = A

Together,

ZCYJO:I:](:E) Z ](a]a:) za] ](:lt) ZQJ g

Jj=1 Jj=1

since aj > 0 if z; € Vx. So, 2' = E «j o z;;. Hence B' almost span X #. Therefore
=
B' is a basis for the als X# by Proposition 2.4.
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Remark. In Theorem 3.2, X = Wx + Vx is essential. Indeed, in Examples 2.1(2)
Y = {{a,b] :a <0, b >0} is an als and B = {b; = [-1,0],b2 = [0,1]} is a basis
for Y. Note that Wy = {[—a,a] : a > 0}, Vy = {{0}} and Y # Wy + Vy. But
B' = {b},b,} is not a basis for Y#. For example, the element f = b} —(—1)ob} € Y#
cannot be written as an almost linear combination of b},b}: Suppose B' = {b},b}}
were a basis for Y#. Then f = a; o b} + a3 o b, with both a's non-negative. Now
(ag 0 b] + ag 0 bl)(b2) = g > 0. However, f(by) = —1. Therefore, such a;s cannot
exist.
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