Biomolecules & Therapeutics
- Volume 3 Issue 4
- /
- Pages.304-310
- /
- 1995
- /
- 1976-9148(pISSN)
- /
- 2005-4483(eISSN)
Effect of Vitamin C on Hepatic Biliary and Microsomal Function in Hepatic Ischemia/reperfusion
간장 허혈 및 재관류시 Vitamin C가 간장 기능에 미치는 영향
Abstract
This study was done to investigate the effect of vitamin C on hepatic biliary and microsomal function during ischemia and reperfusion. Rats were treated with vitamin C(20, 100, 400, 1600 mg/kg) or with vehicle(saline) and then subjected to 60 min no-flow hepatic ischemia in vivo. Control animals were time-matched sham ischemic animals. After 1 or 5 hr of reperfusion, bile was collected, blood was obtained from the abdominal aorta, and liver microsomes were isolated. In vehicle-treated ischemic rats, serum ALT and AST levels peaked at 5 hr and were significantly attenuated by vitamin C 20 mg/kg and 100 mg/kg treatment. Similarly, hepatic wet weight-to-dry weight ratio was decreased in the vehicle-treated ischemic group. Vitamin C 20 mg/kg and 100 mg/kg treatment minimized the increase in this ratio. Lipid peroxidation was elevated in vehicle-treated ischemic group, but this elevation was also inhibited by vitamin C 20 mg/kg and 100 mg/kg treatment. Bile flow and cholate output, but not bilirubin output, were markedly decreased by ischemia/reperfuzion. Vitamin C 20 mg/kg and 100mg/kg treatment restored the secretion but vitamin C 1600 mg/kg reduced the cholate output. Cytochrome P-450 content was decreased by ischemia/reperfusion and restored by vitamin C 20 mg/kg and 100 mg/kg treatment to the level of sham operated group but decreased by vitamin C 1600 mg/kg. Aminopyrine N-demethylase activity was decreased and aniline p-hydroxylase activity was increased by ischemia/reperfusion. The changes in the activities of aminopyrine were prevented by vitamin C 20 mg/kg and 100 mg/kg treatment, but not by 400 mg/kg and 1600 mg/kg treatment. Our findings suggest that ischemia/reperfusion diminishes hepatic secretory functions as well as microsomal drug metabolizing systems, small doses(20, 100 mg/kg) of vitamin C significantly ameliorates and large doses(400, 1600 mg/kg) of vitamin C aggravated these ischemia/reperfusion-induced changes.