Rat Liver $AT_1$ Receptor Binding Analysis for Drug Screening

  • Lee, Sunghou (Pharmaceutical Screening Lab. Korea Research Institute of Chemical Technology) ;
  • Lee, Buyean (Pharmaceutical Screening Lab. Korea Research Institute of Chemical Technology) ;
  • Hwasup Shin (Pharmaceutical Screening Lab. Korea Research Institute of Chemical Technology) ;
  • Jaeyang Kong (Pharmaceutical Screening Lab. Korea Research Institute of Chemical Technology)
  • Published : 1995.03.01

Abstract

The only compounds with antagonistic activity via AT$_1$receptor, one of two subtypes of angiotensin II (AII) receptor, have been demonstrated to block the vasoconstriction effects of AII and thereby provide therapeutic potential. This initiated the search for compounds with high specific affinity to AT$_1$receptor and their effective screening methods. The radioligand binding assay for the AII receptor is regarded as the primary method for the evaluation of AT$_1$receptor antagonists for their activity. In this paper, we characterized the liver AT$_1$receptor and describe the efficient method of the radioligand binding assay using rat liver as a source of AT$_1$receptor. Equilibrium binding studies with rat adrenal cortex, adrenal medulla, liver and bovine adrenal showed that the specific bindings of [$^3$H] AII were saturable in all tissues and the Scatchard plots of those data were linear, suggesting a single population of binding sites. Hill slopes were very near to the unity in all tissues. Kinetic studies of [$^3$H) AII binding in rat liver homogenates yielded two association rate constants, 4.10$\times$10$^{7}$ M$^{-1}$ min$^{-1}$ and 4.02$\times$10$^{9}$ M$^{-1}$ min$^{-1}$ , with a single dissociation rate constant, 7.07$\times$10$^{-3}$ min-$^{-1}$ , possibly due to the partial dissociation phenomenon. The rank order of inhibition potencies of [$^3$H] AII binding in rat liver was AII>Sarile>Losartan>PD 123177. Rat liver homogenates revealed to have very high density of homogeneous population of the AT$_1$receptor subtype, as the specifically bound [$^3$H] AII was not inhibited by PD 123177, the nonpeptide antagonist of AT$_2$. The results of this study demonstrated that the liver homogenates from rats could be the best receptor preparation for the AT$_1$receptor binding assay and provide an efficient system for the screening of newly synthesized candidate compounds of AT$_1$receptor antagonist.

Keywords