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Abstract

In some practical applications of the LMS algorithm the coefficient adaptation can be
performed only after some fixed delay. The resulting algorithm is known as the Delayed Least
Mean Square (DLMS) algorithm in the literature. There exist analyses for this algorithm, but
most of them are based on the unrealistic independence assumption between successive input
vectors. * In this paper we consider the DLMS algorithm with decreasing step size

w(n) = %,w 0 and prove the almost-sure convergence of the weight vector W(n) to the Wiener
solution W,, as n—eunder the mixing input condition and the satisfaction of the law of large

numbers. Computer simulations for decision-directed adaptive equalizer with decoding delay
are performed to demonstrate the functioning of the proposed algorithm.

I . Introduction of situation in at least two typical situations.

First, when employing a decision-directed
The LMS algorithm can be implemented ploying

) adaptive equalizer, if we use a decoding
only under the assumption that we can

. . procedure such as the Viterbi algorithm, the
measure the error signal and input vector at

. . ) . ) desired signal. hence the error. is not
every Iiteration. In some practical situations

. . available until several symbol intervals later
the error signal can be obtained only after

) ) o because of decoding delay. We encounter the
some fixed delay. We will encounter this kind

same problem in adaptive reference echo
* FErB B AT TR cancellation "'’ Second. in the high speed

(Dept. of Applied Electronics, Korea Univ.) signal processing application, if the LMS
BSHT 199594 F298, 48199548280 algorithm is implemented using parallel
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architecture, such as a pipeline structure or
systolic array, the error signal is generated
only after some inherent processing delaym '8
' In such applications the algorithm realized
is the modified version of the LMS algorithm
known as the Delayed LMS (DLMS) algorithm
in the literature.

The convergence properties of the DLMS

algorithm have been investigated by Kabal '*’

Long, Ling, and Proakis ! 1¢

and Herzberg,
Haimi-Cohen, and Be'ery'’' Kabal derived a
stability bound to ensure convergence of the
mean of the weight vector under the standard
independence assumption, which assumes that
the LMS weight

independent of the input vector. Long et al.

vector is statistically
considered the special case when the input

vector arises from a tapped delay line
implementation, and derived a stability bound
on the step size for convergence of the excess
mean square error under the independence
assumption. These analyses are interesting

and give valuable insights into the
convergence properties but, from a practical
viewpoint, they are not enough to guarantee
the correct performance of the particular
realization with which the user must live.
Indeed we need probability one convergence to
guarantee convergence for almost all sample
functions. For the normalized version of the
DLMS (DNLMS) 87

almost-sure

algorithm we proved
convergence with a decreasing
step size assuming the mixing input and the
satisfaction of a certain law of large numbers
instead of the independence of the input. The
normalized algorithm has a nice geometrical

property of projection which is benevolent to

the convergence proof. From an
implementation viewpoint, however, nor-
malized algorithm has disadvantages of

requiring additional multiplications to

calculate the input vector norm square and a

(1199)
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division, which is difficult to implement. In

practice, therefore, the standard LMS
algorithm is preferred for actual imple-
mentation to take full advantage of the

simplicity of the LMS algorithm. The purpose
of this paper is then to extend the previous
analysis to the proof- of the sample
convergence of the DLMS algorithm with an
additional assumption of uniformly bounded

input.

II. Formulation of the Problem

The most common application of the LMS
algorithm is to attack the following problem.
Given a desired signal u(n) and a data vector
X(n). the linear estimation of u(n) in terms of
X(n) is characterized as a weight vector W of
the same dimension N as the data vector such

that the estimate u(n) of u(n) is obtained by

in) = XMW (n

The problem is to find W which minimizes

the mean square error & namely.

E=E{lun—-X(m™W*"} (2)

where E{ -} denotes the statistical expectation
of the braced quantity and the superscript T
denotes the matrix transposition. Since & is a

quadratic functional of W, it is well known

that it has a unique minimizing vector
obtained by choosing
W - R™'r (3
where R = E{X(WX(m") (4)
r = E {ulm)X(n) } (5)

assuming the stationarity of X{(n), u(n), and
invertibility of R. In the absence of knowledge
about the statistics of of u(n) and X(n), we
can solve (3) iteratively by the well-known

stochastic gradient algorithm:
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Wn+1) = WMa)+u {uln)—X(n)"Wn) }X(n) (6) (A2-2) lim 1 Z" (DX()=FE {ul)X() Y=7 a.s
n—oo M {=1 :
where W(n) is the weight vector for the
(A3) 0 kS X(m B 2<K Vn

n-th iteration cycle ¢ and is a constant gain
which controls the rate of convergence and
stability of the algorithm. This the
Widrow's well known LMS algorithm. The
delayed update LMS algorithm arises when, in

is

some practical situations the error signal can
not be observed until after some fixed delay.
the
algorithm, by analogy with (6), becomes

In such applications implemented

Wn+1)=Wn) +u (nn—-d)—Xn— " WMn—d) ) X(n—d)

This is the modified version of the LMS
known as the Delayed LMS (DLMS) algorithm
in the literature. Defining the weight error

vector Y(m=Ww(m-W, and time-varying step

size #(n) and describing the algorithm in
terms of Y(n), we obtain

Y(n+l)= Y(n)—pn—-dX(n—dX(n—d)" Yin—d)

(7)
+uln—d) {u(n—d)—X(n—a')TW,,,,}X(n—d)

. Assumptions and Idea of Proof

In this section we summarize the required
of

important technical lemmas, which are proved

assumptions, basic idea proof, and

in the appendices.
(A1)
sense that there exist a finite integer T and

The input vectors are mixing in the

a> 0 such that for any constant non-zero

N-vector h. the following holds for all n

} >
The random matrix sequences

{u(n)X(n)}

numbers in the sense that

S hX(ntd) )
LS = an

1
T
{X(mX(m)7T)
law of large

and satisfy the

(A2-1) 1imL 3X(X(HT E(XOXDT)=R a.s

(1200)

The mixing assumption (Al) is a deterministic
constraint, and is very common assumption in
the literature "*!! for discussions of algorithm
convergence. Basically it means that, over any
time interval of length T, the components of
X(n) have an average length of at least ¢ in
any direction. To examine the property more
clearly, let us rewrite (Al) as

X(n+)Xn+)7T

[sz Jhzal i
T& I1X(ntd)l? -

X(n+dX(n+i)T

and note that I X(n+ )

is a projection

matrix. Therefore if a sequence of N-vector is
, then

is non mixing since there exists an N

restricted to any proper subspace of B
it
vector h which is orthogonal to the subspace.
By the same reasoning we can expect that T
must be greater than or equal to dimension
N. An equivalent rephrasing of the mixing
condition is

mln {

For the assumption (A2),

1 Tzl X(n+DX(n+)"
T I X(n+9) 1

=0

it is well known
that there exists a large class of stochastic
processes following the law of large numbers
such as the

process (o]

infinite terms moving average
the
independent

and and

[10]

stationary

asymptotically process

Finally, (A3) is nothing but a bounded input
assumption and is not a constraint at all in
practice. Notice that under (A2)

n

2 {u(DX() —X(DX(D W, } = r—RW,p =0

8)

lim
n—oo M

since W, - R'»- Now, with (2-7), if we define

P(n) = X(m)X(n)T (9)

and
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Z(n) = u(WX(n) —X(WX(n) "Wy, (10)

then it can be written in the simple form

Yin+1)— Y =—m(n—d) {(Pn—-d¥Yn—d)—Zn—d) } (11)

Now, adding up d terms of the above, and
solving for Y(n-d) yields

-1
Y(n—-d)= Y(n)+ 2 p(n—2d+)P(n—2d+)Y(n—2d+i)
= (12)

=1
- Z}nﬂ(n—2d+z)2(n—2d+z)

and substituting (12) into (11)., we have
Yin+)= {I-pn—d)Pn—d)] Y(n)
—in= D Pn—) 'S wn =2+ DPn—=2d+) V(=2 +D)
+uln=d)Pn—D) 'S, pn =24+ D Zn=2d+ )+ n ==l
identity matrix of

where 1 denotes the

dimension N. Again, for simplicity, let us
define Q(n), Mn) (n), and L(n) as follows:

Anm)=I-pn~d)PXn—d
) =—uln—DP(n—d) :’g;#(n—zdwp(n—zdm Y(n—2d+9

L(n)= l'(n)+/1(n—a')P(n—d)d;l],u(n—Zd*-z)Z(n—Zd-H')
+u(n—d)Z(n—d)

We then have the following simple form of
the DLMS algorithm

Yin+1)= Qn)Y(n)+L(n)
The solution of the above recursive equation
is given by
Y (n+])=
Bln+1, DY) + 2 Wn+1, i+ DL
T+ 1, DY+ 2 Wnt 1+ DI
+ 347 U= W+ L+ DPG—d) S =20+ D2 =2+

+ ,‘?:1"("_‘1) Vin+1,;+1)Z(;—d)

(13)
where the transition matrix is defined as
Pn, k) =Qn—1Xn—2) ... Xk+1)XAK) ; n> k

=7 im=k
(14)

(1201)
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Now taking the norm of (13) with u(m)=%

7

a>0, we have

| ¥ +D0 = | B4, DY) = 3 Bt 1,5+ D10 |

| LD o g |

=1

+a

IO 7|
(15)
Thus, if we can show that each term of (15)

converges to zero as n tends to infinity, then

WMn)—~W, as n—x,

IV. Proof of the Convergence

Lemma 1: Let ¥(-9 be the transition
matrix of the LMS
decreasing step size. Under (Al) and (A3),
there exist 0 ( 8 (1 and N, that

algorithm with a

ka8 TE sl +iT)

| ®n,m) |l e for ny> Ny

and [x]

greatest integer function of x. The proof of

where m=[ denotes the

n—n ]
this lemma is an extension of the convergence
proof of the NLMS algorithm given by Weiss
and Mitra '""' to the LMS algorithm.

Proof: See Appendix I
Under (A1), (A2), (A3) and

um=%a>0 the weight vector W(n) in the

Lemma 2:

LMS algorithm converges to w, almost surely

as n tends to infinity.

Proof: See Appendix II
(A1), (A2), (A3) and
in the DLMS algorithm

Theorem: Under
W(n)

/A(n)=%.a> 0,

converges to w, almost surely as n tends to

infinity.
Proof of the Theorem:

We prove the convergence of the DLMS
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algorithm by demonstrating that each term of
(15) converges to zero. The first term in (15)
represents the homogeneous DLMS algorithm.

Therefore

tim | Pt 1, DY+ 2 Wt 1,j+DIG) | = 0

(121

due to Lemma 1 and . For the second

term of (3-8), observe that

ntl,7+1 (z—2d+z} “
j—d () j—2d+1

CH & W+l i+ ooy Z(G—2d+D)
S 12 S e Sl €t et u
— ng =1 s Iy
<Z ZM‘L—ZP(/ d)z Z'_ 2d+'z
= = J—2d+1

2 S ‘MLLJ P(i— d ! Zg;?@l

< i—d 0 j—2d+i

(16)

The first term above converges to zero since it
contains a finite number of terms. each of
which

Therefore, we only need to

by Lemma 1.
show the

converges to zero

convergence of the second term of (16) and
the third term of (15) to zero as n tends to
infinity. To finish the proof, we may follow
the same steps of Appendix II from (II-5) to
the end.

V. Computer Simulation

In this simulation we study the use of
DLMS algorithm for decision-directed adaptive
equalizer with decoding delay. Figure 1 shows
the block diagram of the system used to carry
out the

version of Haykin's model '’

simulation, which is a modified
which is widely
accepted for the simulation of the adaptive
equalizer,

The random data generator provides the
test signal, a(n). wused for probing the
channel, whereas the random noise generator
v(n) serves as the source of additive white
noise that corrupts the channel output. These
number

two random generators are

(1202)

other. The

task of correcting the

independent of each adaptive
equalizer has the
distortion produced by the channel in the
presence of the additive white noise. The
random signal generator, after suitable delay
plus decoding delay, also supplies the desired
signal applied to the adaptive equalizer to
simulate a decoder with decoding delay. The

{a(n))

channel is in bi-polar form;a(n)=%*1 with

random sequence applied to the
equal probability, so the sequence {a(n)} has
zero mean and % . The impulse response of
the channel is described by the raised cosine:

. [%[ 1+cos(%(n—2)>]
n) =

(1
0, otherwise
‘[zﬁ.’ utn) @ u(n-d)

Decoding Delay

Tranaversal
Equalizer

Random Data
Generator_fa(n)

Random Noise
Generator

X(n-dy

Fig. 1. Block Diagram for Adaptive

Equalizer Simulation.

where the parameter @ controls the amount
of amplitude distortion produced by the
channel and eigenvalue spread x(R) of the
auto~ correlation matrix of the input to the
produced by

equalizer. The sequence {v(n)},

the second random generator, has a normal
distribution with zero mean and variance
s2=0.000. The equalizer has N=11 taps. Since
the channel has an impulse response (h(n)}
that is symmetrical about time n=2, it follows
that the optimum tap weights w, of the
equalizer are likewise symmetric, about time

n=>5. Therefore, when there is no decoding

delay the channel input {a(n)} must be
delayed by 7 symbols to provide the correct
desired signal to the equalizer. In this
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simulation the adaptive algorithm will be
DLMS due to the decoding delay d. We have

chosen d=20 and a=1 for our simulation.

1.4 v T T T

1.2} For the curves from the bottom to the top i
g when theta = 2.7
‘; it when theta = 3.0 _
g when theta = 3.3
@ oal when theta = 3.6
H
o
o
206
L]
é 0.4}
3
2
]

0.2r

o N 3
4] 100 200 300 400 500

n

Fig. 2. Learning Curves of the DLMS
algorithm.

Simulation result are shown in Figure 2 We
took ensemble average over 100 samples to
obtain this
observe the effect of eigenvalue spread of the

result. From figure., we can
input auto-correlation matrix on the learning
curve of the algorithm: the performance of the
DLMS algorithm is
eigenvalue spread gets

getting worse as the
which is a
characteristic of the LMS algorithm.

large,

VI. Conclusion

This paper has been concerned with the
convergence of the LMS algorithm when it is
constrained to operate with coefficient update
delay. The main result has been to prove the
DLMS
algorithm with decreasing step size assuming

almost-sure  convergence of the

the mixing input and the satisfaction of a

certain law of large numbers. The analysis

does not require unrealistic independence
assumption. Computer simulations are
_performed for decision-directed adaptive
equalizer with decoding delay for comple-
teness.

(1203)
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Appendix 1

To prove the Lemma 1, we start with the

following recursive equation:

(I-1)
Under (A3), to extend the result of '''!,

defining

Yn+1)=Qnm)Y(m= (I-p(m)XmX(n)7) Y(n)

O (my=pu(n) | X(n)|* (I-2)
we get
_ 1. X)X (m) " _
Y+ = QmY(w = I-8(n) ";“M)’I}z] vy (I-3)

The solution of this recursive equation is

given by

Yin+T)=¥(n+T, ) Y(n) (I-4)

where the transition matrix is defined in
(3-7). Taking the norm of (I-4), we get

I Yn+ DI < § O+ T, )} | ¥(a) (I-5)

Now, to wuse the mixing
substituting Y(n) for h in (A1)

assumption,

T=1 a 2
- Y(n) ' X(n+1)
aTl Yin i *s Rl )

_ =1 -~ X(n+ - 2
= & [ )= Yor o+ v T Ry

_ B Yt ) X(n+i P _ i X(nt+d) \*
= S EEITE) + Bl vy T X s

& _ r X(nt)X(n+)T
+2§0(Y(n) Y(n+i) | Xnt 12 Y(n+1)

(1-6)

(I-6) is the fundamental inequality from
which the basic result is developed. Bounds
on each term of (I-6) can be obtained by
utilizing the decreasing property of u{(n)

sequence as follows:

i

721[ Y(n+) " X(n+i)

et
b I X(n+0)T T hen+ T-DQ2—Ku (n)

¥ =1 Y+ DI

o _ T X(n+i)
I, YOD = YOt ) i 8 T )

=0

2



68 DLMS &z 59 ¢ #%¢ A7 AR

< (T=1) AOY.<
= 2 ku(n+T—1)(2—Ku(n)

H¥Y@D I 1 Ya+DID
[ sincell Y(x)| is non—increasing if 0 <ﬂ(n)% ]

& _ r X(n+)X(n+) 7
ZZ:O(Y(n) Y(n+} I X(ntD] 7 Y(n+i)

QT T-Du(mK _
T TG Ry (YW P =1 Y+ D)

Now substituting above bounds into (I-6)
yields

1 P
T (YO0 12 e o (U YO 1 2= | ¥t DI 1Y)

N(T=1) (n)’K* .
TRy ew sy Gy e G ROL RE BCES ST D)

27— T—-)p (WK
t IO R Gy N Y P = 1 Y+ DD

(-7

Multiplying 2k g (n+T-1)(2-Kg(n)) on both

sides of the above, we will have

2ku(nt+ T-1)2~Kp(n)aT| Y(m|*®
I (nt+ D)1 ?

{24207 —T—-DKu(n)+ TXT~1DK* 1 (n)?}

Finally, arranging for I v(»+7)17% we obtain

the following bound:

_ 262~ Ku(m)u(n+ T—1)al .
2+2(2T° = T~1)Ku(n) + TNVT— DK u(n)?

\»Y(n+m2<[1 ]HY(n)IIz

At this point, comparing the above with
(I-5), we get

_ 2K(2 -2 —Ku(mu(n+ T-DT
2+2Q2 T - T-DKu(n) + T{T-1DK*u(n)°

1O+ T, )l s\/1

Now using the decreasing property of u
(n), we obtain the exponential bound on

fo(n+T,n | Equation as follows:

2kaTu(n+ T-D{2—Ku(m)}
2= Ku(n) + (AT —2T~DKun) + X T—1)K?u( n)*

1otn T, =1
<V 1-2KaTu(n+ T—1)8(n)

where

2—Ku(n)

B = R + AT =22 T ) Ku(m) TN =D Rm)?

Notice that 0 <8 <10 <u(n) <% . Thus, there

(1204)

exists No such that for n » No

0 <u(m) <&, 2KaTu(n+T—1) <1
Finally . we obtain

| &(n+T,n) | <1 —KaBTp(n+T-1)

<1-KapTu(n+T) [ since u(n) is decreasing]

<exp [ —kaBTu{n+T) 1

where B= inf.B(n) <0. Q.E.D.

Appendix II

From (2-7), with ww=4% and d=0, we have

the following LMS algorithm in terms of

weight error vector Y(n):

I—a

Ynt1)= {4

XmX(m" | Y+ 2 {uln) = X(n) "W} X ().

In this appendix we show that
Y(m—0an—o assuming (Al), (A2) and (A3).
Using the (3-7), the
solution of the above is given by

transition matrix,

Ynt D)= @n+1, DY) +a 3 L2ELIED (0500 - XX W)

Taking the norm of the above yields, for

any no ,
| Y+ D < 1 @(n+1. D1 | YD) +
a“ 2 00n+1, L ()X~ X)X W) ||

IO+, D1 YD + (I1-1)

a

ny—1 .
£, L X0~ 00X W |

+ o & LX) 00 XD Wi

i=ny

Note that the first term in (II-1) converges
to zero as »—o by Lemma 1, and the second
term also converges to zero for any fixed »,
because it contains a finite number of terms,
each of which converges to zero by Lemma 1.
To complete the proof , it only remains to be
demonstrated that the third term in (II-1)
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can be upper bounded by an arbitrarily small
number by choosing » sufficiently large. To

this end, we introduce

T(n)= Z{w (XD =X (DX(DT Wy (11-2)
Then from (A2) lim-L1L#8L o 5. (11-3)

Hence, for any &0 there exists N; such
that for n > N;

an) ¢

. 8. a.s. (II-4)

Now choose  np max(N,,Ni(«)) where »n, is the

integer lower bound on =, required for the

exponential bound on e(z )i of Lemma 1.
To proceed, for notational simplicity, let us

define

LHS= (11-5)

2, CL L (X - XX W |

which, using (II-2), can be expressed as

LHS — “ ZMMM(H")_N_D) V

At this point applying Abel’s partial
summation formula for a sequence
n n—1
Ema(i){s(i) - St~} = ,_zg‘]{a(z)~a(i+l))5(t)
(11-6)
+a(n)S(n) —a(m~1)S(m~1),S5(0) =0
we obtain
LHS = “ iz::z;:,lil[ (D(n+},i+1) _ CD(nLl_li+Z) }ﬂz')
(I1-7)

+ WntlntDTn) _ O(n+1,7) T(ny—1) ”
n

ny—1

Now, using the definition of the transition

matrix
W(n+l,i+) = Wn+l,i+2) T i+2,i+1),
WGi+2,i+1) = Q(i+1) =I——ﬁX(i+l)X(i+l)T,

and using (II-4), for we obtain the

bound on (II-7) as

ny> Ny

LHS< ” ,-:2:-1 [ 4{r- 57 xG+DxG+1)7)

(1205)
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I

-4 | At LivD TR || +5+es

[ wheres = | ®n+1,np | ]

a1 _L,,L .
< " ,:g"”,(i ] )W(n+1,z+2)ﬂl) I!
+a ’ T XA DXGHD TR LD TG | + 1+ 605
< & W+l i+2 1 | TG
T ifm- i+1
cak & ﬂﬂ%zl’ju__ﬂm“le)a
i=mp—1 ? 7
o ntli+2)|
<{(+aK 3 ﬂ)n+il+zl+2 fltels

Finally, due to Lemma 1

"z‘:‘ O(n+1,i+2)

i+ < C{©,Vn

i=n—1
Therefore

Y(n)—0, ie. Wn)—W, a n— oo
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