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Abstract

In this paper, we propose a new algorithm, so called the Signal Decorrelation via Virtual
Translation of Array (SDVTA) algorithm, for estimating the directions of arrival{DOA’s) of
narrowband coherent signals incident on a general array. An effective procedure is composed
of transforming the steering matrix of the original array into that of the virtually translated
sensor array and taking the average of the transformed covariance matrices in order to
decorrelate the coherent signals. The advantage of this approach is in that 1) it can
estimate the DOA’s of m-1 coherent signals(m : the number of array sensors) since the
effective aperture size is never reduced. 2) a geometry of array is unrestricted for solving the
narrowband coherency problem. 3) the efficiency of signal decorrelation does not depend on
the phase differences between coherent signals unlike the Coherent Signal Subspace Method
(CSM).

Simulation results are illustrated to demonstrate the superior performance of this new
algorithm in comparison with the normal MUSIC and examine the comparative performance
with the various choices of the optimal transformation matrix under coherent signal

environments.
* P& R, SEEHEFENT BEiREHTE Univ.)
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I. INTRODUCTION

In recent years, extensive efforts have been
given in developing superresolution algorithms
for estimating the DOA’s of multiple signals
' These
of the

specific eigen-structure properties of covari-

s 1
incident on a Sensor array[

algorithms, in general, make use

ance matrix estimates and are known to have

better performance than Capon's MLM 2!
and Burg’s MEM'*'| and so on. However,
the performances of these algorithms are

severely degraded when some of the incident
signals are highly correlated since the source
covariance matrix becomes almost singular.

the
problem, Schmidt proposed the generalized
MUSIC  algorithm'*’
signals by replacing the normal DOA search

In order to circumvent coherency

for resolving coherent

vector with the vector composed of the
electrical parameters and multiple angular
parameters, and Zoltowski presented the

vector space approachm which reduces the
load by
angular parameters in combinational search
the

burden due to combinational search

computational involving only the
computational
in the
algorithms above makes them impractical in
like

Shan and Williams, et al.,
]

process. However, large

situations Maximum Likelihood

)71

real
Estimators '
proposed the Spatial Smoothing Techniques'®
""" to solve the coherency problem. but these

techniques are applicable only to uniform or

translational equivalent array with the
effective aperture size reduced due to
subarray averaging. As an alternative
approach for solving the problem, the

Coherent Signal Subspace Method(CSM) '
which takes an average of the covariance
matrix estimates in the frequency domain was
Kaveh, but this

only to wideband

proposed by Wang and

algorithm is applicable

E Nz #IdE 4 AER dugd: HEE A
signals with bandwidths comparable to the
center frequency of the signal.

In this paper, we propose a new algorithm,
so called the SDVTA, which can estimate the
DOA’s  of

incident on a general array.

coherent  signals
The basic idea
of the algorithm proposed herein is similiar to
that of the CSM. However, while the CSM in
the
at different frequencies in one
coherent signal SDVTA combines
the of the

transformed steering matrices associated with

narrowband

wideband processing combines signal
subspaces
subspace,
signal  subspaces virtually
that of the original array to decorrelate the
coherent signals. Furthermore. the efficiency
of signal decorrelation in the SDVTA does not
depend on phase delays between signals
unlike the CSM and can resolve m-1 coherent
signals since it does not reduce the effective
aperture size of the array.

This paper is organized as follows: In
is formulated for
III

presents the brief review of the CSM along

section II, signal model

coherent signal environments. Section

with a discussion on signal reconstruction. In

section IV, the Signal Decorrelation via
Virtual Translation of Array(SDVTA)
algorithm is presented for estimating the

DOA’s of multiple narrowband signals incident
on a general array. The fundamental problem
of finding the optimal transformation matrix
is addressed with the theoretical analysis for
establishing the SDVTA.
are also illustrated in section V in order to
that the
provides a superior performance compared
with that of the MUSIC.

Simulation results

demonstrate proposed algorithm

. PROBLEM FORMULATION

Let us consider a general array composed of
m-identical sensors located at the points =z,
(990)
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23, el z,,, in real three dimensional space
receiving d {(d{m) narrowband signals
{k].kg, ....... k,{}. The
is a unit direction vector and a

and
coming from directions
vector &
function of the azimuth angle(4) and elevation
angle(¢) as specified by & = [ sin,cos¢,, cos8;
the received

cos¢;, sing; 1. In this case,

signal at the i-th sensor can be written as

(1

d , .
x{(t) = jgls,(t)e’(m"k"z‘/c RLEPE)

where ¢ is the propagation velocity of signals,
wy the center frequency, ¢; the random initial
phase of the j-th signal, and »(# the additive
In this
denotes the

Gaussian noise at the i-th sensor.

[

expression, the symbol

transpose operator. The outputs of the m
-sensors can be represented by the vector

notation as follows :

()= AR s(H+ (1), (2)
where x(t), s(t) and #»(#) are given by
(&) = [, x(0),..... (D] Tel”
s(8) = [si(De™ sy(De™, ..., sdpe”™] "eC?
o, = (n, n),...., (0] TeC” (3)

A(k) is the m x d
columns are steering vectors and written as

steering matrix whose

A(R) = Lalk),alky),...., a(kp) eC™

(4)

alk) = [e™*°, .., e

In the analysis to follow throughout the
paper, it is assumed that the signals and
additive noises are zero mean wide-sense
complex-valued

which

From our assump-

stationary and ergodic

Gaussian random  processes are

pairwisely uncorrelated.
tion, it follows that the covariance matrix k&,
is given by

R, =E (x()x" (1]

(5)
= A(RR,A" (B + R,

% 32 % B %
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in which R,=E{s(ds*(®},
the expression above, the symbols "E” and

AR, = E(n(yy’(D}. In

e
denote the expectation and complex conjugate
transpose operator, respectively. It is assumed
that the noise covariance matrix R, is known
If the
incident signals are not perfectly correlated,
the
nonsingular and A(k) R,A*(k)
From the generalized eigen-characteristics of

but the noise variance ¢ is unknown.

source covariance matrix R, remains

is of rank d.
the matrix pencil (R,, R,), it is seen that the
multiplicity of the smallest eigenvalue is m-d
and the value is equal to noise variance .
Also,
these smallest eigenvalues are orthogonal to

the eigenvectors v, corresponding to

the columns of matrix A(k), i.e.,

ARy, =0 (d+1<jsm) (6)
The fundamental multiple source location
problem can be solved using this formula.
When the incident signals are coherent,

however, Eq. (6) is no longer valid. Now, we
briefly address the

may arise in multipath environments. Let us

coherency problem which

assume that two signals are coherent., i.e.,

so(De™ = as(De™, where @ is a complex
constant describing the amplitude and phase
relationship between signals. In this case,

s(t) and A(k) can be rewritten as

st = [s1(De™ ;0™ ..., s He®1’

AR = [alk) +aa(ky),alky),..... al k] (7)

From Eq. (7),
covariance matrix R,
the

we can see that the source
is of rank d-1 and the
multiplicity  of smallest  eigenvalue
m-d+1. Also, the

corresponding to the smallest ecigenvalues are

becomes eigenvectors
orthogonal to the columns of matrix A(k).
Since the first column of matrix A(k) is not
can not

an ordinary steering vector, we

estimate the DOA’s of coherent signals with a

(991)
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straightforward application of eigen-analysis
based algorithms. More detailed discussion

about the coherency problem can be found in'®
1ol (1]

OI. Coherent Signal Subspace Method

Wang and Kaveh first introduced the CSM
in order to improve a resolution capability of
the MUSIC'"*. which was further developed
by Hung and Kaveh'''.
a significant

In order to achieve
improvement in estimation
performance, it is essential that we suitably
combine the informations at all frequencies for
With this

in mind, it is now assumed that the estimates

which the SNR is reasonably large.

of the steering matrices A(k w) at frequencies
w; for =0, 1, ..., J-1,
determined where J is the

have been seperately
number of
frequency bins. Since the ranges of the
composite steering matrices {i.e., signal sub-
spaces) are different for distinct frequencies,
we can not simply take an average of the
covariance matrix estimates to improve the
Thus, this approach selects
T(k,®) which
satisfies the following set of equations,

angle estimation.

the transformation matrix

Alk,wy) = Tk, w)Alk, @), fori=0,1,2,....7-1. (8)

The transformation matrices are approxi-
mated by using the initial angle estimates on
k and the knowledge of the steering matrix.
A coherent signal subspace is constructed by
taking an average of the covariance matrix
estimates at different frequencies. From Eg.

(8), we provide another interpretation in
order to explain the motivation from which
the SDVTA is derived in next section.

consider the array output vector at the j-th

Let us

frequency bin which is expressed as

Hw,)=Alk,w)s{w) +nw) for j=0,1,2,.....0-1.(9)

E Az 28 A4 A=d dayF

fhEE

Under the assumption that s(w;) and 7(w))
are an unknown deterministic vector and a
normal random vector, respectively, the
minimum variance unbiased estimate of S(W)
is the orthogonal projection of s(w,) onto the
range (or column space) of A(k w) '™ The

estimate of s(w;) is given by

S(w) = Ak w)Alk,w)) "Alk,0) ()
(10)
= A*(k, wx(w;)

where Af(kw) is referred to as the

pseudo-inverse of A(kw;) which satisfies the

oy | .
four Moore-Penrose conditions'''. The j-th
transformed  covariance matrix can be
rewritten as

R(w) = Tk w)RLw)T (k w)

= Alk,w)A"(k, 0)RL0)A’ (k, 0)) A%k, o)
= Alk,wp)E[A’ (h, wpx(@){A* (k, w)x(@)})"] A*(k, wy)
- A(k.wu)E[ S(w,‘)S‘(CU,') !A‘(k, wo)
(11)
It can be seen from Eq. (11) that the signal

vector (or the covariance matrix ) is
reconstructed as the output of an another
system corresponding to center frequency «,.
This interpretation allows us to have the
intuition that the covariance matrix measured
in one sensor array can be transformed to the
virtually  {or

one measured in another

practically) translated array.

IV. Signal Decorrelation Via Virtual
Translation Of Array (SDVTA)

By wusing the concept of the CSM and
translating a sensor array virtually in the
spatial domain, an effective procedure is
herein developed for solving the narrowband
coherency problem for a general array
The idea is based on the fact that

any steering matrix corresponding to one

geometry.

sensor array (or its subarray) can be

(992)
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transformed to another steering matrix
associated with the virtually translated array
by using the optimal transformation matrix in
Fig.

array to

the least squares sense. 1 shows the

translation of a sensor virtual

positions by displacement vectors.

a8 1. e <kEige] TRAAl o) F

Fig. 1. Virtual
geometry

translation of array

1. Solution Procedure
Let x(# denote the virtual snapshot vector

of the received signals at the j-th translated

array by a displacement vector 4;. Using Eq.
(2), x{1 is given by
x(H) = A(BDD(EA)S(H +7D for j=0,1,2,.....a—1 (12)

where the d x d diagonal matrix D(kd) is
given by

D(k, 4 ]) - diag [e/wuk‘ld,/c,e Juwoky /¢ e jwnla,'d,/r] ( 1 3 )

......

and (g-1) denotes the number of the virtually

translated arrays. In this expression, x(#

represents the original snapshot vector where
4, is a three dimensional zero vector and 4,
is chosen by a processor. Before examining
the second-order statistics of the snapshot
useful tool for

vector which provides a

estimating the DOA’s, we first review the

% 32 % B % 7% 51

following lemma.

If the matrices A(k) and DXk 4)
have full rank of d, then there exists the m
X m matrix 7(k 4, such that

Lemma 1 :

..q—1.(14)

The simple proof is given in It should
be noted that the range of A(k) is the same
as that of ARIXk 4) since D(kJ4) has full
the

corresponding to the original array is equal to

AR Dk, d))= T(k, 4)Ak) for j=0,1,2,...
[101]

rank of d. Namely, signal subspace
that related to the virtually translated array
while the signal subspaces are different for
distinct frequencies in wideband array signal
processing. A variety of approaches for
selecting T(k, 4;) are given in later part of this
the j-th trans-

formed covariance matrix is given by

section. Based on lemma 1,

Elx(Dx; (D)= Tk, 4)R. T (k, 4,), (15)

in which the transformed noise covariance

matrix is expressed as

E{n(Hn, (D)= Tk, )R, T(k, 4,). (16)

Upon taking an average of the transformed
covariance matrices, the averaged covariance
matrix can be written as

R, = Eﬂ/ed)RT(kd)

.Q‘b—l .Ql,._.

”2 Tk, A)ADRA (DT (k, 4)

iEﬂM)RT(k 4)
(17

B[ 8 Dk a)RD R 2)] AR

+ 2 E T(h4)R,T"(k, 4)

A'(k)+ o R,

where R, and R, are given by

R = LS e ayrpea)
(18)
R, =1 ?_,()T(kd)lx’ T'(k, 4)

and represent the spatially smoothed source

(993)
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covariance matrix and noise covariance

matrix, respectively. We shall now formulate
that the averaged source covariance matrix is

nonsingular without regard to the coherency

of signals.

Theorem 2 : Let IXk4) and R, denote the
dXd diagonal matrix and the source
covariance  matrix, respectively. If the

number of the virtually translated arrays of g
is greater than or equal to the number of the
sources of d, then R, is of full rank.

The

From theorem 2, the effective aperture size is

references ' %"

proof is given in
not reduced since the size of the averaged
covariance matrix is the same as the number
That is. the SDVTA

algorithm can resolve m-1 coherent signals

of original elements.

incident on a general array geometry. We can
also use the SDVTA in conjunction with the
widely employed algorithms, such as MUSIC
1 gEM!) (6]
since Eq. (17) has exactly the same form as
Eq. (5).

Up to this point in this section, we have

Minimum-Norm and so on,

hypothesized that k are the same as true
angles. However, k must be estimated in pra-
ctical situations resulting that the efficiency
of signal decorrelation may depend on the
the dis-

transformation

preliminary angle estimates on k,
the
Wang and Kaveh

placement vector, and

matrices. introduced the
preliminary processing to obtain good esti-
it is

mates on k. In the analysis to follow,

assumed that the preliminary estimates are
in the neighborhood of the true angles. From
our empirical results, it has been found that
dis-

probability of

twice of a wavelength is
of the
standard deviation, and
the performance of the SDVTA does
depend heavily on the initial angle estimates.
the

a proper
placement in terms
resolution, bias, and
not

To address problem of selecting the

HEx s
fundamental

optimum transformation matrix,

least squares problem will be first examined.

2. Fundamental Least Squares Problem
The problem of transforming a given matrix
into another matrix often arises In many

applications such as system identification,
direction-of-arrival estimation, and statistical
We shall

squares

and so forth.
the

transforming a given matrix B into a given

analysis, now

consider least problem of
matrix A by a transformation matrix T so
that sum of the squares of the residual
A-TB be minimized. Mathe-

matically, this problem can be expressed as

matrix E =

follows

TB=A+E (19)

1E|% = t#(E'E] = min (20)

where the matrices A, B and E are m x n
complex matrices, T is a m x m complex
matrix, Frobenius norm of matrix, and tr [ |
is the trace of the matrix. Eq. (19)
represents the and Eq. (20) the

Several approaches for solving the

model
criterion.
least squares problem are now examined.

(1) Nonunitary transformation matrix

If we define the matrix B' as B' =

v=*U. then

minl| A— TB| » —>T= AB* (21)
where
St = diagloy ', o0t 6;10,0,0,...,0] er™
r= yvank(B)

In this expression, the orthogonal matrices U
and V correspond to the SVD of B
B=U2XV"

U=1 u,u,....,un], V=1 01,05,...,0,]

where

(994)
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> =diagla,o,,..., a,]
012052 .,..20,0 0,1 =.,..=0,=0
p=min(m, n)

in which the o, are real nonnegative singular
values which are ordered in monotonically
nonincreasing fashion oo, and =, and o
are corresponding orthonormal m x 1 left and
n x 1 right singular vectors, respectively. If

rank(B)=m=n, then T is given by

T=AB"' (22)

(2) Unitary transformation matrix
A solution to the

addressed in section A

least squares problem
is well known and
in many applications. We shall
the that of
selecting a unitary matrix T which minimizes
tr [E*E]

employed

herein consider problem as

with T preserving the Frobenius

norm of any matrix. In other words, the
following constraint is given

T'T=TT"=1 pim (23)
in which 7., is m x m identity matrix. The

the
formulated in

solution to constrained minimization

problem s theorem 3.

Theorem 3 : Let A and B denote two given
matrices contained in the vector space C™" of
m x n complex matrices that have the same
rank. Then the optimal unitary transformation
matrix T which minimizes || A—TBllr subject to

T'T= TT" = I,.,. 1S given by

T=VU (24)
where the orthogonal matrices U and V
correspond to the SVD of BA*, that is,
BA"=UZ V", (25)
The proof is given in references ' 2! 117!

is not unique
1171

The transformation matrixT
when BA*
Based on theorem 3, the following observation

is a rank deficient matrix

¥ 32% BR ¥ 7% 53

can be made

o The mapping T:R(B)—>R(A) represents
the closest rotation of the range of B
into that of A with a possible preceeding
reflection in some hyperplane.

o If A is equal to B, then T is the identity

matrix.

o If B is equal to the identity matrix,
then this problem is established as the
orthogonalization of A..

It is to be noted in this optimization

problem that the normalized error

Il Azlis/ll A= Bl may be relatively large even
though R(A) matches R(TB) perfectly. This
case results from the fact that the unitary

transformation matrix T  provides the in-
variant norm, that is
| TBllz = || BllFr
3. Optimal Transformation Matrices for
SDVTA

As previously discussed, it is apparent that
the unitary and nonunitary transformation
matrix can be optimally selected in the least
We shall
or not this solution

squares examine
whether

applicable to the DOA estimation problem.

senses. now

is efficiently

Since the choice of the transformation matrix
plays an important role in establishing the
SDVTA algorithm effectively,
how to select T(k,d) which enables us to
the the SDVTA

we will focus on
improve performance of
algorithm.

Least Squares Problem : Given a composite
and AKK)D(k, 4)),
develop T(k,4)
which minimizes || ARk 4)— Tk, d)A(R) |, for
j=0,1.2,......, q-1.

solving the problem have been discussed in

steering matrix A(k)

a procedure for selecting

approaches for

Several

(995)
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section B. An effective application is made to
entail in some manner the ability to solve the

multiple coherency problem.

Method I : Least Squares Method

(B, 4) = ADIXB, AYAB* fori=0,1,2,......, a-1 (26)
Method 1I Rotation of Signal Subspace
Method (ROSS)!'2) 1171

(B, 4)= VU (27)
where

AQD (B, ADABD*=UZV

T B ANTB. 4D =1 ym
Method 111 Dummy Direction Vector
Constrained Method (DDVC)
T(B,v.4) =1 A, A() [A(B),A(N]

Ny, d;)

where 8 and ¥y are the sets of preliminary

and selected

the

estimated vector arbitrarily

dummy vectors, respectively. Finally,

SDVTA is described as follows.

(1) Choose the initial angle estimates A (and

7).

(2) Select the displacement vector 4; for j =
0.1, ......, a-1.

(3) Estimate 7(k 4) by using Method I, II,
I1I.

(4) Estimate R, and R, given in (17) and
(18).

(5) Make a generalized eigenanalysis of
matrix pencil ( R,, R,).

(6) Apply the existing algorithms (e.g.

MUSIC, SEM, MN, and so on.).

(7) Estimate DOA’s.

V. Simulation Results

Two examples are considered to test the

¢

g

=

E Az £UE 4T Med dadF

ek it

effectiveness of the proposed SDVTA algorithm
for a general array. The first example is
presented to illustrate the performance of the
proposed method to the
MUSIC the  statistical

performance with the dispalcement vector and

relative normal

and investigate
initial angles changed. The second example
shows the comparison of the performances
with the various choices of the transformation
matrix. The array considered is composed of

eight sensors in the (X-Y) plane at locations

2= 10.0,2.01",2,=11.3,1.3]",z3=[1.9,0.0 | ",
zg= [1.5,—1.51 ",z5= [0.0,-1.8] "zg= [ ~1.7,-1.71",
27+ 1 —1.5,0.0) ",zg=1 —-1.6,1.6]"~

where a sensor spacing unit is taken to be i,

which is the wavelength of the signal. The

sensor noise vector 7(t) is taken as a
complex valued additive white Gaussian
random process whose components have
identical variances and are statistically

The data length
is taken to be 500 samples. In the simulation
examples, shall apply MUSIC to the
SDVTA algorithm.

Example 1 : Two narrowband coherent plane

independent of the signals.

we

waves were taken to have the azimuth angles

of 6,=40" and 8, =50"(¢=0").
noise selected

The sensor
that
signal-to-noise ratio(SNR) levels of 10 dB are

variance is 80 two
One virtually translated array is
[246,0]) "

in order to resolve two coherent signals. In

obtained.

taken with the displacement vector

employing the SDVTA, a set of initial angles
is taken to be {37.0°43.0°,44.0°,45.0%46.0°,47.0°,
53.0°.54.0°}
Direction Vector Constrained transformation
It is to be noted that these initial
angles are chosen to be apart from the true

for approximating the Dummy

matrix.

angles more than 3°. The initial angles relat-
ed to the dummy angles are determined by

adding the multiples of 1BW/m to the

(996)



1995% 7TH B+ T8EaHm G

preliminary angle estimates in real situations.

s

30

2o

201

DOA SPECTRUM (DB)

AZIMUTH ANGLE (DEG)

(a)
as
30
23
g 20
E 15
E
g 10
g s
o
-sf
_IOO 20 40 80 .0 100 120 140 180 180
AZIMUTH ANGLE (DEG)
(b)
J8 2. K ANz AR defud dEuUE o]

83 % zeloflEAlse A 4
(SNR=10dB)
(a) MUSIC (b) SDVTA-MUSIC
Fig. 2. Ten statistically independent sup-
erimposed angle estimates for two
coherent narrowband plane waves
at azimuth angles of 40° and 507 .
These estimates were obtained us-

ing a general array which is
composed of 8 elements at SNR =
10 dB.

(a) Normal MUSIC
(b) SDVTA-MUSIC
with the DDVC

in conjunction

One beamwidth({1BW) is chosen as 4,/D in

F32% BE B TH 55

which D represents the aperture size of the

array. Fig. 2 shows ten statistically in-
dependent superimposed estimates to
illustrate the high resolution performance

achieved with the SDVTA method relative to
that obtained with the normal MUSIC. It is
evident from Fig. 2 that the normal MUSIC
fails to detect the two incident plane waves in
Although not

shown, this approach is unable to resolve two

any of the ten trial runs.
perfectly coherent sources in a higher SNR
setting since the source covariance matrix is
singular. On the other hand, it is seen that
the SDVTA-MUSIC able to
consistently resolve two coherent signals.

algorithm is

1.oOA

]
2
3
3
]
3 0.5
fd
E
_§ 04 3.0
&

02 -

0.0 | ' 1 1

0.0 25 50 1.5 100 12.5(dB)

Signal-to-noise ratio

3% 3. WHE 49 wE SDVTA-MUSICY
w3 5ol gk g4

Fig. 3. Probability of resolution of the
SDVTA-MUSIC with the various
choices of array displacement
vector. (& = [ 14, 0}  for1 =

0.5, 1.0, 1.5, 2.0, 2.5, 3.0).

To examine the sensitivity of angle estimates
to displacement vector and initial angles. fifty
independent generations of covariance matrix
estimates are made, and Table 1 and Table II

show the statistical performances in terms of

(997}



56 Ao W AdHUZ dAEtE oY e UE Nao FUE Y AEE dnAdF: HEER H
the  sampled bias, sampled  standard 40°+3.0°] and simultaneously the second
deviation(STD), and root mean squared source in the interval [50°—3.0%50°+3.0°].

error(RMS). It can be seen from Table I that

displacement

performance.

that the

of
It

2

statistical
SDVTA-MUSIC
sensitive to

initial

algorithm

Ao

is also shown

provides

performance
is

the

not

angle estimates,

best

in Table II
of

the
much
which

makes it attractive in real situations. To test

the

resolution

capability of the

proposed

method with the array displacement vector

changed,

the

probability

of

resolution

is

herein defined as the probability that one

source is estimated in the interval [ 40°-3.0°,

E: 2

The probability of resolution can not be
the
quite

reliable in
it

appropriate for the purpose of examination of

considered theoretically

absolute sense, however, is
the sensitivity of the method in resolving two
Fig. 3 shows the probability of

6, =40°

plane waves.
resolution as a function of SNR for
and #2=50°.

resolution capability is achieved in the case of

It is apparent that the highest

displacement 24, under the given condition.

Example 2 In this example, we shall

investigate the comparative performance of

1. AspEe] e 9, =404 EAA A%

Table 1. The statistical performance at 6 ,=40° with various choices of the

array displacement vector.

Displacement SNR=5dB SNR=10dB SNR=15dB
s Bias STD RMS Bias STD RMS '  Bias STD RMS
0.5 x D x % x x ok xxx *xx *+x -93110x7 1.00x107 1.01x10°
1.04 * x o * ok -1.78%x10% 9.32x10% 9.49x107 | -7.99x10° 4.87x10% 4.93x107
1.54 o *x % o w -1.65X107 8.18x10° 8.34x107 | -4.29x10° 4.49x10% 4.51x107
2.04 ‘ 8.15x10°%  1.756x107  1.76x107 | 2.79%107  9.02x107 9.03x107 ! 3.08x10° 5.02x107 5.03x107
2524 | 4.35x107  1.94x10"  1.99%107 | 1.52x10%  1.02x10%  1.04x10" | 7.40x10°  568x10° 5.73x102
3.04 0 7.56x10%  1.90x107  2.05x107 | 2.84x107  1.01x107  1.05x107" | 1.30x10% 5.63x10° 578x10°

L —e — —
1) "* = *’ denotes that SDVTA-MUSIC does not resolve two signals at least one time out of 50

independent trials.

g

Table 2. The statistical performance at

2. 273l BE g, =409 EAR 45

nearest initial angles.

6 ,=40° with various choices of the

SNR=2.5dB SNR=5dB ! SNR=7.5dB
Cases SAD [————— = s s -
Bias STD RMS Bias STD RMS Bias STD RMS

Case 1 6° 3.00%107  3.15x10"  4.35x10" | 2.43x10" . 2.33x107  3.37x107 | 2.24x107  1.86x1070 2.91x10"
Case 2 4° 1.36x10"  2.88x107  3.18x10" | 9.18x10% 2.06x10° 2.26%10' | 7.93x10° 1.56x107 1.75x107
Case 3 2° 6.55x10° 2.73x100 281x10' | 2.91x10% 1.90x107 1.92x107 | 2.21x10% 1.41x10°% 1.42x10°
Case 4 ¢ 425%10% 2.64x107  268x107 | 1.00x10% 1.82x10" 1.82x107 | 2.93x10° 1.30x10' 1.30x10"
2) Initial angles for SDVTA-MUSIC

Case 1=1{28", 30°, 32°, 34°, 56°, 58° 60° 62°, Case 2=(28", 30°,
Case 3=1{280, 30°, 32°, 38" 52° 58° 60° 62°. Case 4={28° 30°

32°, 36°, 54° 58° 60°, 62%
. 32° 40 50° 58° 60°, 62%

(998)
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the Method II(ROSS) and III(DDVC) as
examined in section IV-C in terms of the
sensitivity to the initial angles.

W

20} 1

DOA SPECTRUM (DB)
°

0 20 40 80 8o 100 120 140 180 180

AZIMUTH ANGLE (DEG)

(a)

40

30

8

DOA SPECTRUM (DB)
s

o 20 40 80 80 100 120 140 180 180

AZIMUTH ANGLE (DEG)

(b)

a8 4. 40° 2 45° 2 slalske F oY 73]
oJHEAZ g 3 (SNR
=20dB) (a) SDVTA-MUSIC-ROSS
(b) SDVTA-MUSIC-DDVC

Fig. 4. Ten statistically independent super-
imposed angle estimates for two
coherent narrowband plane waves
at azimuth angles of 40° and 45" .
These . estimates were obtained
using a general array which is
composed of 8 elements at SNR =
20 dB. (a) SDVTA-MUSIC in con-
junction with the ROSS approach (
a set of initial angles = {37.5° .
42.5° , 475" 1)

(b) SDVTA-MUSIC in conjunction
with the DDVC approach ( a set
of initial angles = {35° , 37.5" .
42.5° 475, 50° , 520, 530, 54" })

# 32% Bl # 7% 57

301

T

20 40 80 a0 100 i20 140 180 180

a
8
x
2
£ o}
-
B
n
-1
Q
a

40

AZIMUTH ANGLE (DEG)

(a)

DOA SPECTRUM (DB)

0 20 40 60 a0 100 120 140 1L 100
AZIMUTN ANGLE (DEG)

(b)

a8 5. 40" 9k 45" 2 sJARke FYUY el
dEAZY =it 4 (SNR=15dB)
(a) SDVTA-MUSIC-ROSS
(b) SDVTA-MUSIC-DDVC

Fig. 5. Ten statistically independent super-
imposed angle estimates for two
coherent narrowband plane waves
at azimuth angles of 40° and 45° .
These estimates were obtained
using a general array which is
com,~sed of 8 elements at SNR =
15 dB.

(a) SDv - TUSIC in conjunction
with the ROSe approach( a set of
initial angles=1{39.3°, 42.5°, 45.7°})

(b) SDVTA-MUSIC in conjunction
with the DDVC approach( a set of
initial angles={35°, 37°, 39.3°42.5°,
45.7°, 48°, 50°, 52°)

Two coherent plane waves are assumed to

(999)
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have the azimuth angles of 40 and 45°. The
and the

vector are the same as those given in example

number of samples displacement
1. Ten independent trials are made and the
resultant plots obtained with the Methods II
and II1 are shown in Fig. 4 at SNR 20 dB and
in Fig. 5 at SNR 15 dB. In Fig. 4,
initial angles is taken to be {37.5%,42.5%47.5"}
for Method 11 and {35°37.5¢42.5%,47.5%,50°,
52".53°, 54"} for Method III.

It is to be noted that the smallest angle

a set of

difference between true angles and initial
angles(SAD) is taken to be 2.5°. It is clear
in Fig. 4 that Method III is able to resolve
consistently two perfectly correlated signals
while Method II fails to resolve them. In Fig.
5. Methods 11 and III chose the initial angles
as  139.3".42.5",45.7°)  and {35°,37°,39.3,42.5°,
45.7°,48°,50°,52"}, respectively. In this test,
the SAD is taken to be 0.7°. It is seen that
Method 1l provides the better performance
than Method IIT1.

significant

From Figs. 4 and 5, a truly
estimation
DDVC
approach to the SDVTA algorithm in terms of

increase in angle

performance is achieved in the
a less sensitivity to the initial angle
On the other hand. the ROSS

approach provides a more challenging test of

estimates.

resolution capability as the SNR is decreased
under the condition that SAD is relatively
small.

VI. CONCLUSION

The SDVTA algorithm has been presented
for estimating the DOA’s of multiple nar-
signals incident on a

rowband coherent

general array. The fundamental concept is
based on the virtual translation of the array
for decorrelating the coherent signals. The
proposed algorithm transforms the steering

matrix corresponding to the original array to

2R St

those of the virtually translated arrays in a
fashion of multiple replica and takes an
average of the transformed covariance matrix
estimates. This approach is able to resolve
m-1 coherent sources since the effective
aperture size does not reduce.

Through the several examples, it has been
found that the SDVTA algorithm provides a
superior performance relative to the normal
MUSIC.

performance

It has been also shown that the
of the SDVTA
conjunction with the DDVC transformation

algorithm in

matrix depends heavily on the array dis-
placement vector but is relatively insensitive

to initial angle estimates.
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