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ABSTRACT

In this article, we propose a class of weighted estimators for the
excess risk in additive risk model with a binary covariate. The proposed
estimator is consistent and asymptotically normal. When the assumed
model is inappropriate, however, the estimators with different weights
converge to nonidentical constants. This fact enables us to develop a
goodness-of-fit test for the excess assumption by comparing estimators
with different weights. It is shown that the proposed test converges
in distribution to normal with mean zero and is consistent under the
model misspecifications. Furthermore, the finite-sample properties of
the proposed test procedure are investigated and two examples using
real data are presented.
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1. INTRODUCTION

In investigating the association between covariates and the survival time,
the proportional hazards and additive risk models can be considered. These
two models are different in specifying the hazard function for the survival time
T associated with a p vector of possibly time-varying covariates Z(+). The Cox
proportional hazards model postulates the proportional effect of covariates

Z(t) on the baseline hazard function Ao(t),
A(t: Z) = holt) exp(¥H Z (1), (1.1)
while the additive risk model postulates the additive effect,
At; Z) = do(t) + BoZ(t), (1.2)

where B, and =, are p vectors of regression parameters (Lin and Ying (1994)).

In order to assess the adequacy of the proportional hazards assumption
in model (1.1), many methods have been developed. Among them, Gill and
Schumacher (1987) have considered two-sample model having p = 1 and an
indicator covariate Z as a special case of model (1.1) and have constructed a
test based on the difference of generalized rank estimators for the relative risk.
The key idea behind the test procedure is that in nonproportional hazards
situations, two different consistent estimators for the relative risk might give
significantly different results. Lin (1991) extended the idea of Gill and Schu-
macher (1987) to model (1.1). In his article, a class of estimating functions for
~, has been introduced by incorporating the weights into the partial likelihood
score function. When model (1.1) is inappropriate, the difference between two
consistent estimators with different weights may be large.

The purpose of this article is to propose a test for checking the adequacy
of model (1.2) with p = 1 and with a single binary covariate Z. In other
words, we intend to construct a test procedure to assess whether the hazard
difference between two groups in two-sample problem is constant or not. In

the next section, we introduce some notations and assumptions. In Section
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3, we propose a test based on the difference between two weighted estimators
for the excess risk, which is a version of Gill and Schumacher’s test. Also, the
asymptotic and finite-sample properties of the proposed test are investigated.

Finally, two examples using real data are provided in Section 4 as illustrations.

2. PRELIMINARIES

Let X = min(7,C), where T is the true survival time with an absolutely
continuous distribution function and C is the censoring time corresponding to
T. Let A =I(T < C), where I(-) is the indicator function. As mentioned in
the previous section, let the covariate Z for a subject in group 1 be equal to 1
and Z in group 2 be equal to 0. Assume that T and C are independent and
for each group 7 (1 = 1,2), (Xi;,Ai;, Zij) (7 = 1,...,n;) are independent and
identically distributed replicates of (X, A, Z).

Furthermore, let us define some stochastic processes. Foreachi =1,2; j =
1,...,n, let Nij(t) = I(X;; <tand Ay = 1) and Y;(t) = I(X;; > t). Also,
for each 1 = 1,2, let N;(t) = X71, Nyj(t) and Yi(t) = 37, Yi;(t). Then, Ni(t)
means the number of deaths before or at ¢ in group ¢ and Y;(¢) the number at
risk at ¢— in group .

The additive risk model considered in this article can be represented as

At Z) = dol(t) + foZ, (2.1)

where By is an unknown regression parameter. Then, under model (2.1), the
counting processes V;;(t) have the intensity function Y;;(¢)(Ao(¢)+B0Z;;). Also,
according to the Doob-Meyer decomposition, N;;(t) can be uniquely decom-
posed so that M;;(t) = Ny(t) — J§ Yij(w)(Ro(u) + BoZi;)du, where Mi;(-) is a
square integrable martingale (Andersen, Borgan, Gill and Keiding (1993)).

In this article, we are interested in testing the additivity between two hazard
functions. Therefore, our test problem is given by

Ho: Mt;Z=1) - MNt; Z=0) =y for some Sy

vs.

Hi M, Z=1)— MNt; Z=0)# Bo for any pBo.
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3. THE PROPOSED TEST AND ITS ASYMPTOTIC
PROPERTIES

Under model (2.1), the regression parameter fo is interpreted as the excess

risk, the difference between two hazard functions. Define a weighted estimator

Bx for the excess risk fy as

K= ) JTK@)dv | Yi(u) Ya(u) |’
where K(-) is a predictable weight function and 7 = inf{t| Y1(¢)Y2(t) = 0}.
To investigate the asymptotic properties of the weighted estimator B, let us

assume that the following conditions hold:

(C1) ni/n — pi (1 =1,2), where n = ny + na.

(C2) There exist functions y; and y, taking values in (0, 1) such that under
model (2.1), supo,<, |Yi(t)/ni — ()] 2,0 (s =1,2), where > denotes

convergence in probability.

(C3) There exists a function g taking values in [0,00) not everywhere zero
such that under model (2.1), supg¢, <, | K(2) — g(t)] - 0.

Assuming that model (2.1) holds and the conditions (C1)-(C3) are sat-
isfied, the consistency of weighted estimator BK can be easily shown from
Lenglart’s inequality (Andersen, Borgan, Gill and Keiding (1993)) and the

weak convergence of n'/2(8x — Bo) can be derived in the following theorem.

Theorem 1. Suppose that the conditions (C1)—(C3) are satisfied. Then,

under model (2.1), n'/?(Bx — o) converges in distribution to normal with mean

zero and varlance

) T (w) 1°[dAs(w)  dAg(u)
K= /0 [fgf](v)dv] Llyl(“) * p2y2(u)
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where A;(+) is the cumulative hazard function corresponding to group z. Fur-

thermore, o7 can be consistently estimated by

o ] K@) 1P[dNi(u)  dNy(w)
h=r), [f&li’(v)va [ A n<u)2J'

Proof. Note that under model (2.1),

) T K(u) dMi(u)  dMa(u)
Vn(Bk — Bo) = ‘/T—L/O JT K (v)dv [ Yi(u)  Yi(u) J

where M;(-) = 3°7, Mj;(-). According to the martingale central limit theorem
and the conditions (C1)-(C3),

Vi [ st | ale) _ )]

converges in distribution to normal with mean zero and variance

/Tg(u)2 [dAl(u) N dAQ(U)J ‘

p1y1(u)  paya(u)

Therefore, nl/Q(ﬁK — fo) converges in distribution to normal with mean zero

and variance o

On the other hand, we can guess from the consistency property of weighted
estimators that the discrepancy between two consistent estimators ﬁ}gl and BK2
corresponding to weight functions K and Kj, respectively, is small as long as
model (2.1) is valid and some appropriate conditions are satisfied. Therefore,
it is reasonable to consider Dk, k,, defined by Dk, k, = ﬁAKl -ﬁk'2, as a measure

for checking the adequacy of model (2.1).

Theorem 2. Suppose that model (2.1) holds and the conditions (C1)-
(C3) are satisfied. Then, Tk, g, = n'/25 5 Di, k, converges in distribution

to standard normal, where 6% . is a consistent estimator of

PR () ga(v) 1*[dM(w) | dhs(u)
ke = /[fo y g1(v)dv fngz(U)dU] ’:Plyl(u)+P2y2(u)}
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and is given by &%\'1K2 = n(V11 —Vig — Var + V22) with

. T Kl(u)Kw(u) le(u) dN2(u) T
Vi —/0 J7 Ki(v)dv J§ Ki(v)dv [Yl(u)2 * yz(u)z} (i,¢=1,2).

Proof. Under model (2.1), Dg, k, can be represented as

o = [k~ 73] [ - 45

From Fleming and Harrington (1991) and the conditions (C1)-(C3),

n~t/? ko) ey - [ gr(u) .U] 4 =
[0 Yi(u) AMi() 0 piyi(u)dM’( ) 0 (1,4 =1,2),

where % denotes convergence in distribution and gi:(-) is the limit of weight
function K (-) satisfying the condition (C3). Therefore, n'/? Dk, k, is asymp-
totically equivalent to

12D o = /2 [ gi(w)  ga(u) } [dMl(“) _ dMa(u)
Drars /0 [fo’gl(v)dv JT g2(v)dv| | prya(u)  paya(uw)

Since n1/2l~7K1K2 is simply a sum of independent and identically distributed
random variables, it follows by the martingale central limit theorem that
n'/2Dg i, converges in distribution to normal with mean zero. Also, the

variance of the limiting distribution can be derived as follows:

[ a(w) e '[dMl(U)_dMM)}}?
o g qa(v)dv  J§ g2(v)dv] [paya(u)  paya(w)

:E{ J i ——C '2[n<u>dAl<u>+Yz<u)dAz<u>J}

ST [7 g2(v)dv] | plyi(u) p3y2(u)

2, /f[ a® g ]2[dA1(U)+dA2(u)}
o | [Tai(w)dv  [Jg2(v)dv]| [piya(u)  payalw) ]|
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Therefore, n'/? Dy, k, converges in distribution to normal with mean zero and

variance o r. .

According to Theorem 2, if the absolute value of test statistic Tk g, is
large, we may conclude that the additive risk assumption is not valid any
longer. Furthermore, it can be shown that the proposed test statistic Tk, k,
is consistent against alternatives with monotone hazard differences provided

H(t) = (5 Ki(uw)du) ' Ki(t) — (fy K2(u)du) ' K,(t) is monotone, too.

Theorem 3. Suppose that the conditions (C1)—(C3) are satisfied. Then,
the goodness-of-fit test Tk, i, is consistent against the model misspecification,
A(t; Z) = Ao(t) + B(t)Z, where B(t) is an unspecified monotone function of ¢
provided A(t) = (fy g1(w)du)"tg1(t) — (fy g2(w)du)tg2(t), which is a limit of

H(t), is monotone in t.

Proof. Note that from Fleming and Harrington (1991) and the condition
(C3),

/O'Tf{i,(u)dgzi’;) 2, /O’Tgi,(u)dA,-(u) (i,i = 1,2). (3.1)

Then, Dk, k, in Tk, g, converges in probability to

s g1(v)dv  f7 ga(v

If both the hazard difference, A(t; Z = 1) — A(¢; Z = 0), and A(-) are monotone

increasing or decreasing, then the limit (3.2) of Dg, g, is positive. Similarly, if

/0{ g(w) u;dv} (dAy(u) — dAq(w)). (3.2)
) -

they are both monotone but in different directions, (3.2) is negative.
Now, consider the term 0, x, in Tk, k,. From the conditions (C1)-(C3)
and (3.1), nVis (4, = 1,2) converges in probability to

gz(u)gi( ) dAl(u) dAZ(u)
/ Jo gi(v)dv 7 gin(v)dv | prys(u) * pay2(u) ] (3:3)

Thus, the limit (3.3) of nVis is positive from the assumption that both g¢;

and g, are positive. Finally, from the above two results, the test statistic
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Tk, K, is consistent against alternatives with monotone departures of excess

risk provided A(-) is monotone.

4. FINITE-SAMPLE PROPERTIES OF j3x AND Tk, k,

4.1 Finite-Sample Properties of the Proposed Estimator

Monte Carlo experiments were carried out to assess the performance of ﬁAK
proposed in previous section for practical sample sizes. Table 1 shows some
typical results. For this table, survival times were generated from the addi-
tive risk model, A(t; Z) = Ao(t) + foZ, and censoring times from the uniform
distribution U(0, c), where Ao() has a Weibull distribution and c is suitably
chosen to ensure the desired censoring proportion. Also, three weight func-
tions satisfying the condition (C3) were considered as follows: Gehan’s weight,
Ka(t) = Yi(t)Ya(t); logrank weight, Kp(t) = (Yi(t) + Ya(t))"'Y1(2)Ya(t);
Prentice-Wilcoxon’s weight, Kp(t) = (Yi(t) + Ya(t)) 1Yy (¢)Ya(t)S(¢). Here,
5(-) denotes the Kaplan-Meier estimator of the survival function based on
the combined sample of two groups (Kaplan and Meier (1958)). To investi-
gate the differences between three weight functions, let us a weight process,
L(t) = W)Yi(H)Ya(t)(Yi(t) + Ya(t)) ™t Kg(t) with W(t) = Yi(t) + Ya(t) gives
relatively more weight to the early deaths than Kp(t) with W(t) = 1. Kp(t)
with W (t) = S(¢) is preferable to K5(t) when censoring is heavy. It is evident
from Table 1 that our proposed estimators are nearly unbiased and also are

better than the unweighted estimator.
4.2 Finite-Sample Properties of the Proposed Test Statistic

In our simulation studies, the empirical sizes and powers of test statis-
tic Tk, k, corresponding to all possible combinations of three different weight
functions were considered. Hereafter, Tz denotes the test statistic corre-
sponding to a pair of Gehan’s and logrank weight functions, Tgp a pair of

Gehan’s and Prentice-Wilcoxon’s weight functions and Trp a pair of logrank
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and Prentice-Wilcoxon’s weight functions. According to Theorem 2, we can
perform a two-tailed level « test by comparing the absolute value of the pro-
posed test with the upper «/2 quantile of the standard normal distribution.
For brevity, W(p,7) denotes the Weibull distribution with a scale parameter
p and a shapé parameter 7 and Exp(A) the exponential distribution with a

parameter A.

Table 2 displays the empirical sizes of test statistics Tgr, Tep and Trp. As
shown in Table 2, the sizes of the proposed test are well controlled and the

proposed test is stable regardless of censoring distributions.

Table 3 displays the empirical powers of test statistics Ty, Top and Tip,
for detecting the violation of the assumption of constant hazard difference.
In order to generate alternatives, three pairs of two groups were considered
as follows: W(+/2,2) vs. W(1,2), W(2,2) vs. W(1,2) and W(+/6,2) wvs.
W(1,2); therefore, the hazard differences for each pair are 2¢, 6¢ and 10t,
respectively. Table 3 shows that as N increases and CP decreases, the empirical
powers of test statistics increase. Also, it is evident from Table 3 that the
more departure from null hypothesis causes the powers of test procedures to
increase. Being compared with the powers of tests Tz, and Ty p, those of test
Tgp are always larger regardless of sample sizes, proportions of censoring and
types of alternative hypothesis. These differences in powers, however, are not

substantially great.

5. EXAMPLES

The goodness-of-fit test proposed in Section 3 is applied to two real data
and the results are discussed. The first data is taken from Freireich et al. (Cox
(1972)), which consist of the times to remission for two groups of leukemia pa-
tients. The p-values of Ty and Trp are 0.077 and 0.065 respectively. From

these results, it is difficult to assume the additivity between hazard functions.

545
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In fact, it has already been known that the Freireich et al’s data satisfy sig-
nificantly the proportional hazards assumption by Wei (1984) and Gill and
Schumacher (1987).

As another example, we consider the small cell lung cancer(SCLC) data
(Ying, Jung and Wei (1995)). This data set contains the survival times of 121
patients with SCLC. The 59 patients of 121 are administered etoposide followed
by cisplatin and the remaining 62 patients cisplatin followed by etoposide. The
p-values of Ter, and T p are 0.368 and 0.348, respectively. So, it is evident that
it is reasonable to accept the additive risk assumption. Furthermore, when the
same data are applied to Gill and Schumacher’s test, the p-value of a pair of
Gehan and logrank equals 0.029 and a pair of logrank and Prentice-Wilcoxon

0.027. Therefore, the assumption of proportional hazards is rejected.

Table 1. Empirical Estimators for the Mean and MSE of Bk Based on 1,000

Replications.

Bk Brs Bk, Bk» Bk, °
Bo  Xo(f) N® CPc | mean MSE mean MSE mean MSE mean MSE
05 1 50 029 | 0.525 0.254 0.532 0.218 0.523 0.244 0.607 0.571

0.5 | 0.504 0.325 0.523 0.286 0.503 0.290 0.561 0.743

100 0.2¢ | 0516 0.109 0.519 0.091 0.514 0.104 0.555 0.350

0.5¢ | 0.511 0.160 0.516 0.130 0.508 0.140 0.540 0.411

0.7/ | 0.505 0.271 0.504 0.226 0.500 0.231 0.489 0.547

2t 50 0.2¢ | 0504 0.107 0.499 0.148 0.501 0.108 0.497 0.940
05+ | 0.518 0.132 0517 0.168 0.511 0.135 0.524 0.848

100 0.29 | 0.498 0.056 0.502 0.076 0.497 0.057 0.546 0.740

0.5 | 0.491 0.067 0.493 0088 0488 0.071 0.521 0.676

0.7¢ | 0.526 0.070 0521 0.089 0.518 0.075 0.518 0.511

20 1 50 0.22 | 2.047 0.658 2088 0.641 2.038 0.644 2.340 1.698
055 | 2.025 0.848 2040 0.762 1.994 0.764 2.163 2.101

100 0.2 |2.019 0316 2024 0.295 2013 0307 2174 0.990

0.5+ | 1.978 0.424 1.991 0.361 1967 0.379 2.053 1.270

0.7t | 2.015 0.671 2.020 0.564 1.996 0.573 2.036 1.490

2t 50 0.2m | 2.066 0.368 2.075 0.397 2.056 0.363 2.216 1.387
0.5 | 2.086 0.490 2.078 0.514 2.053 0.467 2.156 1.814

100 0.2m | 2.042 0.181 2.048 0.207 2.037 0.181 2.140 1.116

0.5 | 2.016 0.211 2.015 0.227 2.001 0.207 2.061 1.165

0.7° | 2.015 0.244 2.010 0.257 1.991 0.237 2.047 1.160
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NOTE: « Unweighted estimator with K(¢) = 1. ® Sample size in the combined sample. ©
Censoring proportion. ¢ U(0,4.12). ¢ U(0,1.30). f U(0,0.615). ¢ U(0,3.92). » U(0,1.563).*
U(0,0.944).7 U(0,3.23). * U(0,0.908). * U(0,0.406). ™ U(0,3.16). ~ U(0, 1.17). ° U(0, 0.633).

Table 2. Empirical Sizes of Test Statistics, Tgr, Tgp and Trp, Based on 1,000
Replications.
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0.01 0.05

0.10

CP | Ter Tgp Tip Tor Tep Trp TgiL

Tep

Trp

100

200

0.0 10.009 0.009 0.009 0.043 0.043 0.043 0.098
0.2¢ { 0.004 0.014 0.005 0.043 0.047 0.042 0.103
0.5¢ | 0.006 0.006 0.005 0.048 0.051 0.039 0.092
0.0 | 0.006 0.006 0.006 0.040 0.040 0.040 0.080
0.2 | 0.008 0.006 0.009 0.051 0.054 0.052 0.109
0.5¢ | 0.009 0.008 0.009 0.053 0.051 0.054 0.104
0.0 | 0.007 0.007 0.007 0.047 0.047 0.047 0.084
0.2¢ | 0.004 0.009 0.004 0.046 0.050 0.042 0.101
0.5¢ | 0.011 0.012 0.011 0.0562 0.051 0.0561 0.099

0.098
0.097
0.103
0.080
0.097
0.099
0.084
0.093
0.100

0.098
0.104
0.092
0.080
0.103
0.106
0.084
0.102
0.102

(B) 50

100

200

0.0 |0.010 0.010 0.010 0.046 0.046 0.046 0.099
0.2¢ {1 0.011 0.017 0.011 0.048 0.059 0.048 0.097
0.5/ | 0.008 0.015 0.009 0.057 0.052 0.046 0.096
0.0 |0.015 0.015 0.015 0.048 0.047 0.048 0.093
0.2¢ | 0.008 0.007 0.013 0.063 0.051 0.054 0.101
0.5/ ] 0.009 0.008 0.008 0.038 0.043 0.038 0.089
0.0 | 0.009 0.009 0.009 0.049 0.049 0.049 0.098
0.2¢ | 0.009 0.009 0.010 0.059 0.047 0.060 0.107
0.5/ | 0.012 0.011 0.014 0.0561 0.063 0.055 0.109

0.099
0.108
0.102
0.095
0.110
0.098
0.098
0.106
0.119

0.099
0.097
0.091
0.093
0.099
0.095
0.098
0.107
0.108

NOTE: ¢ Survival times of two groups were generated from W(2,1) and W(1,1) respec-
tively. & UU(0,3.69). < U(0,1.12). ¢ Survival times were generated from A(t; Z) = 2t + 22. «
Frp(0.376). f Exp(1.36).

Table 3. Empirical Powers of Test Statistics, T¢r,, Tgp and Tp, for Detecting

the Nonconstant Hazard Differences Based on 1,000 Replications.

« 0.01 0.05 0.10
N HD CP | Tgr Tep T Tor Tgp Top Ter Tep Tip
50 2t 0.0 0.018 0.018 0.018 0.159 0.159 0.159 0.295 0.295 0.295

0.2¢ ] 0.027 0.051 0.017 0.174 0.190 0.158 0.301

0.5 } 0.015 0.032 0.007 0.117 0.137 0.090 0.229 0.221

0.293 0.283
0.203

(Continued)
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Table 3.(Continued) Empirical Powers of Test Statistics, Tar, Tep and Tp,
for Detecting the Nonconstant Hazard Differences Based on 1,000 Replications.

o 0.01 0.05 0.10
N HD CP | Tt Tgp Tip Tgr Tgp Tip Ter Tgp  Tip
50 6t 0.0 0.118 0.118 0.118 0.449 0.449 0449 0.671 0.671 0.671
0.2¢< | 0.086 0.129 0.066 0.408 0.372 0.375 0.638 0.537 0.612
0.5¢ | 0.044 0.098 0.023 0.315 0.345 0.270 0.524 0.525 0.488
10¢ 0.0 0.171 0.171 0.171 0.615 0.615 0.615 0.810 0.810 0.810
0.2¢ | 0.148 0.165 0.121 0.576 0.487 0.561 0.793 0.659 0.773
0.5/ | 0.080 0.158 0.041 0.463 0496 0.410 0.669 0.664 0.641
100 2t 0.0 0.128 0.128 0.128 0.421 0.421 0421 0.609 0.609 0.609
0.2¢ | 0.101 0.158 0.083 0.336 0.397 0.305 0.508 0.543 0.487
0.5* | 0.063 0.100 0.038 0.233 0.292 0.185 0.395 0.428 0.350
6t 0.0 0.560 0.560 0.560 0.883 0.883 0.883 0.944 0.944 0.944
0.2¢ { 0.496 0.629 0.442 0.857 0.878 0.826 0.941 0.949 0.923
0.54 [ 0.354 0.458 0.252 0.717 0.773 0.629 0.859 0.866 0.803
10¢ 0.0 0.764 0.764 0.764 0.962 0.962 0.962 0.991 0.991 0.991
0.2¢ | 0.756 0.807 0.711 0.960 0.965 0.947 0.990 0.988 0.988
0.57 10532 0.653 0.432 0.845 0.886 0.802 0.934 0.946 0.905
200 2t 0.0 0.425 0.425 0.425 0.745 0.745 0.745 0.847 0.847 0.847
0.2¢ [ 0.365 0.491 0.322 0665 0.750 0.629 0.802 0.844 0.758
0.5% 1 0.212 0.322 0.154 0.514 0.591 0426 0.648 0.712 0.572
6¢ 0.0 0.977 0.977 0.977 0.998 0.998 0.998 1.000 1.000 1.000
0.2¢ 1 0.954 0.986 0.926 0.993 0.998 0.992 0.995 0.999 0.995
0.594 1 0.835 0.908 0.738 0.965 0977 0.936 0.980 0.995 0.965
10¢ 0.0 0.996 0.996 0.996 1.000 1.000 1.000 1.000 1.000 1.000
0.2¢ { 0.999 0.999 0.997 1.000 1.000 1.000 1.000 1.000 1.000
0.5 10971 0.987 0934 0.997 0.999 0990 1.000 1.000 0.997

NOTE: © U(0,3.78). ® U(0,1.48). < U(0,3.32). ¢ U(0,1.26).  U(0,3.12). F U(0,1.16).
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