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ABSTRACT

A random shock model for a linearly deteriorating system is intro-
duced. The system deteriorating linearly with time is subject to ran-
dom shocks which arrive according to a Poisson process and decrease
the state of the system by a random amount. The system is repaired by
a repairman arriving according to another Poisson process if the state
when he arrives is below a threshold. Explicit expressions are deduced
for the characteristic function of the distribution function of X(t), the
state of the system at time ¢, and for the distribution function of X(t)
if X(t) is over the threshold. The stationary case is briefly discussed.
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1. INTRODUCTION

In this paper, we introduce a random shock model for a system which de-
teriorates linearly with time. It is assumed that the state of the system 1s
initially # > 0 and thereafter decreases linearly at a constant rate g > 0 until
a shock arrives at the system. The shocks come to the system according to
a Poisson process of rate v > 0. Each shock iﬁsta,ntaneously decreases the
state of the system by a random amount Z, where Z is a nonnegative random
variable with distribution function H. It is further assumed that the system is
repaired by a repairman who arrives at the system according to another Pois-
son process of rate A > 0 ; if the state of the system when he arrives exceeds a
threshold , he does nothing, otherwise he instantaneously increases the state
of the system up to B(or if necessary replaces the system with a new one).

This model is illustrated in FIG 1.
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FIG 1 (o:shock, *:repairman)

Lee and Lee (1993) introduced a similar random shock model for a system. In
the model, however, the state of the system was assumed to deteriorate purely

jumpwise due to the shocks. In this paper, the earlier model is generalized
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by assixming that the state of the system deteriorates linearly between shocks,
which may be a more realistic assumption. The probabilistic structure of the
model is quite different from that of the earlier model. F irstly, the discrete
probability at state 4 no more exists in the present model. Secondly, any
state less than B can be passed through either jumpwise due to the shock or
continuously due to the linear deterioration. Notice that in the earlier model,
any state less than # can be passed through only jumpwise with probability
one. Thirdly, the first passage time from state 8 to state z,a <z < f,is
now bounded by (8 — z)/u with probability one, since the state of the system
decreases constantly at rate u, even if no shock arrives. These differences lead
us to adopt new approaches in the key steps on the way of analyzing the model.

Our model can also be applied to an inventory with Poisson restocking (see
Baxter and Lee (1987)) by assuming that the level of the inventory decreases
linearly due to regular orders and jumpwise when irregular orders come. It is
assumed that the irregular orders come according to a Poisson process and the
amount of each is a random variable.

Let X(t) denote the state of the system at time ¢ and let F(z,t) =
P{X(t) < z} denote the distribution function of X(t), we derive an integro-
differential equation for F(z,t) in section 2, and solve the equation in section
3 to obtain an expression for the characteristic function of F(z,t), where some
terms are still needed to be evaluated. In section 4, we obtain an explicit
formula for F(z,t), for « < z < f3, by making use of a renewal argument, and
use this result to complete the expression for the characteristic function. The
stationary case is discussed in section 5.

For convenience to analyze the model, we allow that X(t) takes on the
negative values, which might be regarded as undesirable in some applications
such as the inventory. Notice, however, that in the case where the state 0 is
considered as an absorbing barrier to prevent the state from being negative,
the probability of the system in state 0 at time ¢ is exactly same as F'(0,¢) in

our original model.
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2. INTEGRO-DIFFERENTIAL EQUATION FOR
F(z,t)

During the interval (¢, + 6t), one of the following four mutually exclusive

events will occur:

(a) Neither the repairman nor the shock comes, then
X(t+ 6t) = X(t) — bt almost surely.
(b) The repairman does not come but the shock comes, then
X(t+6t)= X(t) — Z — pbt almost surely.

(c) The repairman comes but does nothing since X (t) > a, and the shock

does not come, then

X(t+6t) = X(t)—uét and X(t) >« almost surely.

(d) The repairman comes and repairs the system since X (t) € «, and the

shock does not come, then

X(t+ 6t) = f— pbt’ for some 6t' <§t, and X)L«
almost surely.

Notice that the probability of the event that both the repairman and the shock
come during the interval (t,t + ét) is o(6t). Thus, for z < 8,

F(z,t+68t) = P{X(t+6t) <z}
= (1—A6t)(1 — vbt)P{X(t) — pbt < z}
+(1 — A8t)(vEt)P{X(t) — Z — pét < z}
FASH(1 — vét)P{X(t) — ubt < z, X(t) > a}
+A6t(1 — v6t)P{B — pét' < z,X(t) < a}

+o(61),
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where P{X(t) — pét < z} = F(z + pbt,t) = F(z,t) + pét L F(z,t) + o(6t)
on performing a Taylor series expansion by assuming that dF(z,t)/dz exists.
Subtracting F'(z,t) from each side of the above equation, dividing by §¢, and
letting ¢ — 0 gives us the following integro-differential equation for F(z,t):

%F(m,t) = ya—aw-l:'(:z:,t)—vF(x,t)—/\F(x/\az,t)+1//0°o F(z+2z,t)dH(z), (2.1)

for z < 3, and F(B,t)=1forallt > 0.

3. THE CHARACTERISTIC FUNCTION OF F(z,t)

Taking the ordinary Fourier transform of equation (2.1) with respect to «
yields
af°(s,t)
ot
= p{exp(isf) — isf°(s,t)} — vf°(s,t)

M fo(s,0) - /ﬂ exp(isz)F(z, t)dz + F(a, t)exp(isﬁ) .—exp(isa)}

a 2]

u{ht(=s)fo(s, ) + ZRUSE) _ exUoBR(=s)y (3.1)

18 s
where f°(s,t) = [°_ exp(isz)F(z,t)dz and h*(—s) = [5° exp(—isz)dH(z).
Rearranging the above equation and putting g(s,t) = [°exp(isz)F(z,t)dz,
we obtain the following ordinary differential equation for f°(s,t):

dfo((i:’t) + {ius + A+ I/(l - h"‘(—s))}f°(s,t)

= pexp(isf) + Ag(s,t)
_ APl t){exp(ish) — exp(isa)} | vexp(isB)(1 - h*(=s)) (3.2)

18 18
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On solving the above equation with boundary condition f°(s,0) = 0, we

see that
fo(s,t) = exp(—{ius + A +v(1 = h7(=s))}t)

x [ “exp({ins + A + w(1 — h*(—s))}u){exp(ish) + Ag(s,u)

AF (o, u)lexp(isB) — exp(isa)] vexp(1sf)(1 — h™(=s)) }du. (3.3)

(2] ts

Since the characteristic function of F(z,t) with respect to z, f*(s,t) say, sat-
isfies f*(s,t) = exp(isB) — tsf°(s,t), it can be shown that

Fi(s,1) = /_‘; exp(isz)dF(z,t)

_ exp(tsf)
ius + A+ v(l — h*(—s))

x [ips + v(1 = h*(=s))]} — exp(—{ips + A + v(1 — h*(=3))}1)

{X + exp(—{ips + A + v(1 — h*(—3s))}1)

< /Ot exp({is + A+ v(1 — h*(—s))}u){isAg(s, u)
— AF(a,u)[exp(isfB) — exp(isa)] }du. (3.4)

The terms F(a,u) and g(s,u) will be evaluated in the next section.

4. A FORMULA FOR F(z,t), a<z<f

Consider the points where the actual repair occurs. The sequence of these
points forms an embedded renewal process. Let T™ be the generic random

variable denoting the time between successive renewals. Then
T 27T, + E, (4.1)

where £ denotes equality in distribution, T}, is the first passage time from state

£ to the state a, and E” is an exponential random variable with parameter A.
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We, first, derive the distribution function of T,, then we can use the renewal
argument of Lee and Lee (1993) to deduce an expression for F(z,t),a <z <
B. To do so, we project the process {X(t),t > 0} between two successive
renewals onto the vertical axis. Then we obtain an alternating renewal process
{EY/%,Z,}, n > 1, starting from B and moving to the negative direction,
where E¥/#’s denoting ‘up’ times are independent exponential random variables
with parameter v/u and Z,’s denoting ‘down’ times are independent random
variables with distribution function H. Let A(S — «) be the total time spent
in ‘up’ state during the interval (e, 3). Observe that

T, 2 A8 - o)/ (4.2)

Takacs (1957) showed that the distribution function of A(S — «) is given
by '
had i

PAAB-a) <t} =1~ 3 exp(vt/w) L g0V g —a—t), (03

n=0
where H(™ is the n-fold recursive Stieltjes convolution of H, H®) being the
Heaviside function. It follows from equation (4.2) that the distribution function

of Ty, U, say, is given by
Ua(t) = P{Ts <t}

vt)" B -«
n! - U

. (4.4)

= 30— HOH8 )] exp(~t)

Further, notice that, by the similar argument to the above, the distribution
function of T}, the first passage time from state 3 to the state z, a < z < 3,
U, say, is given by

t)—-Z[l H™( -—a:—,ut)]exp(—zxt)(l:!)n, 0<t<=—=. (4.5)

n=0

Then, by the same argument as that of Lee and Lee (1993), it can be shown
that , )
Flz,t) = Us(t) —/0 (1= Ualt — u)}dW (u), (4.6)
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where W (t) = £, V(")(t) is the renewal function of the embedded renewal

process, V(t) being the distribution function of T* which is, from equation

(4.1), given by
V(t)= P{T* <t} = /Ot Un(t — )\ exp(—Au)du.

Equation (4.6) enables us to determine the terms F(a,t) and g(s,t) in the

expression for the characteristic function of F(z,1) obtained in section 3.

5. STATIONARY CASE

In this section, we briefly consider the case where the distribution function
of X(t) does not depend on time ¢, that is, OF(z,t)/0t = 0; we denote the
corresponding distribution function by F(z). From equation (3.1), it follows
that

fo(s) =/ﬁ exp(isz)F(z)dz

1
T ips + A+ v(1 — k*(—s))

3 AF(a)[exp(isﬂ) — exp(isa)] + vexp(isf)(1 — h*(—s))}’ (5.1)

(2] 18

{nexp(isB) + Ag(s)

where g(s) = [P exp(isz)F(z)dz.
Applying the key renewal theorem to equation (4.6), we obtain,
fora <z <48,

E(T*) - E(Tz) _ ME(Ta) — E(T2)] +1
E(T*) B AE(T,) + 1 ’

F(z)=

where
—vt)(vt)"

~ H™(B — z — ut)dt. (5.3)

E(T.) = /OE‘F i exp(

n=0



A Random Shock Model for a Linearly Deteriorating System

In summary, the characteristic function of the stationary distribution func-

tion F(z) is given by

f(s) = /_‘; exp(isz)dF(z)

_ MF(a)lexp(isf) — exp(isa)] + exp(ispB) — 1sg(s)} (5.4)
tus + A+ v(1 — h*(—s)) ’ )

where F(a) and g(s) can be determined from equation (5.2) and (5.3).
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