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ABSTRACT

Output processes emanating from exit arcs in a multiple server open
Jackson network with node ¢ having s; servers are determined. Beutler
and Melamed(1978) showed, for traffics on all exit arcs of single server
open Jackson network in equilibrium, that the customer streams leaving
any exit set are Poisson and that the collections over all nodes which
yield the Poisson departure processes are mutually independent. In this
paper we generalize the above results to multiple servers open Jackson
network in equilibrium. While no weak limit result is possible under the
equilibrium condition, nonetheless approximations to the distributions
of maximum queue lengths for no feedback nodes in multiple servers
open Jackson network are established.
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1. INTRODUCTION

We consider a network of N server nodes with node 7 having s; servers. Cus-
tomers can arrive from outside to node ¢ independently according to respective
Poisson processes with intensity A;. The servers at node ¢ work independently
according to an exponential distribution with parameter y;. When a customer
completes service at node ¢, he goes next to node j with probability P;; (inde-
pendent of the system rates, A;, y; for 4,7 = 1,2, ... , N). There is a probability
Py, that a customer will leave the network at node ¢ upon completion of service
such that Py =1— E;-V:l P,;. There is no limit to queue capacity at any node.

Throughout this paper, we assume that

. N
i} <1, where 6, = M\ + Z(Sjpji
S; =
=t (1.1)
o; .
and p; = —.,z=1,2,...,N.

so that, since we consider output processes in equlibrium, P{Q:(t) = ny,.. .,
Qn(t) = ny} is time invariant to with Q; being the queue length of node ¢ at
time t and §; given in (1.1) is uniquely determined by ergodicity of Q:(t).

It is well known that each node (say the :-th) having s; servers in equilib-
rium for the open Jackson network defined as above behaves as if it were an
independent M/M/s; system with a Poisson input rate &; (cf. Jackson(1963))
even though in general total input to the node ¢ is not a Poisson process. How-
ever, as Beutler and Melamed(1978) indicated, there is a class of arcs along
which the traffic consists of Poisson processes. These are so-called exit arcs.
Node j is said to be accessible from node i(notationally, ¢ — j )if, for some
n > 0,P7 > 0. Both nodes ¢ and j accessible to each other are denoted by
7 g,

Definition 1.1. The canonical decomposition of an open Jackson network

with N nodes is the partition

={C,:q=1,2,...,£ <N} (1.2)
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induced by the communication relation < with C; = {0}. An arc (i,5),7 €
Cp,J € Cy is an exit arc if P;; > 0 but Pj;; =0 for i # .

We assume without loss of generality that ¢ > p if there exist some nodes
1 € Cp,j € Cy such that ¢ — j but j 4 i. Following the notation of Beutler
and Melamed(1978), define K;;(t) to be the counting process on the arc (3, 5)
over the time interval (0,%]. That is, Kj;(¢) is the number of customers leaving
node ¢ and arriving instantaneously at node j in the period (0, t].

Section 2 establishes that the queueing processes Q;(¢) and counting pro-
cesses Kyj(t),e=1,...,N,7 =0,1,...,N,i # j on exit arcs (¢, ;) are mutually
independent and moreover, K;;(t) are mutually independent Poisson processes
in equilibrium. These generalize the results of Beutler and Melamed(1978)
in the sense that we consider the output processes in a multiple servers open
Jackson network and, in addition, in any subset of the canonical decomposi-
tion p in (1.2). Using the results in section 2, we investigate in section 3 under
what conditions can we assert that the maximum queue length of node ¢ lin-
early normalized will have a non-degenerate limit G with appropriate norming

constants ay;, b;; such that
tlim P{bi(M;; — ay;) <z} = G(z),

where My; is the maximum queue length of node ¢ in the time interval (0, t].

2. OUTPUT PROCESSES FROM EXIT SETS

One is often interested, for networks, in output processes from individual
nodes since they influence input processes to other nodes. For example, the
output process from a previous node is the basic requirement in order to de-
termine the input process to the next node in series queueing systems like
tandem queues. Melamed(1979) showed that output processes for no feedback
nodes(i.e, there is no path a departing customer can follow that will eventually

feedback, prior to exiting a network) in a single server open Jackson network
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are mutually independent Poisson processes. Disney, et al.(1980) showed that,
for a feedback node, the output process is never a Poisson process nor is it a
renewal process. In this section , we only consider the output processes for no
feedback nodes in a multiple server open Jackson network. We now define a

certain set, so called, a set of exit arcs as follows.

Definition 2.1. A set V; of nodes in an open Jackson network is said to be

an exit set with respect to a set V; of nodes if P;; = 0 whenever j € V3,¢ € V5.

Let V, = {C1,...,Cp} be a set of nodes numbered 1,2,...,r,r1+1,...,73,

o Tp1,Tp1+1, ..., mpand V = {Cpy1, ..., C}U{0}, ¢ < N be a set of nodes

with numbers r, + 1, ..., 7y, 0 without loss of generality. Moreover, we assume

throughout this paper that (V, U V) is the complement of V,UV, and i — k

for all i € V, and k € (V, UV,)°. Then we may consider V, as an exit set with
respect to V, by Definition 2.1.

Remark 2.2. Let Q__p(t) = (Q1(t),...,Qp(t)) and K, (t) = (Ki;(t),2 =
1,....,p,j =1,...,9),p,¢ < N in multiple servers Open Jackson network as
defined before. Then (Q (t), Kpq(t)),p # ¢ is a Markov jump process with
denumerable state space and a.s a finite number of jumps in each finite time
interval. This assertion can be easily shown since Qp is a Markov process by
the nature of Poisson inputs from outside and of exponential servive times(cf.
Beutler and Melamed(1978)).

Let (n,,k,,): be the event that is Q:(t) = n; and K;;(t) = ki; for 1 €
V,,j € V, at time t. Then the marginal probabilities of P{(n,,kpe)e+r |
Qi(t), Kij(t),i € Vp,j € V;} can be shown as follows:

If Qi(t) = n; and Kj;;(t) = ki; for each 7 € V},, 5 € V;, with and
n; if n; < S;

¢(n) = { s; 1 n; ; S84,

N 71p

1—hz)\ — k> S ((ni)piPij + o(h). (2.1)

7=01=1

then
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Or, similar approach as above, if Q¢(t) = n¢, kem(t) = kem, each £ € V,,m € V,
except Qi(t) =n; — 1 for ¢ € V},

i)\ih + o(h). (2.2)

Or, if Q(t) = ne, kem(t) = kem, each £ € V,,m € V, except Qi(t) = n; + 1 for
1 € Vy,

. 2+ DpiPih + o(h). (2.3)
F€(VpUVg)e 1=1
Or, if Q¢(t) = ne, kem(t) = kem, each £ € V,,m € V, except Qi(t) = n; + 1 and
kio(t) = kio -1 fOI' ) € 1/73,
> ¢(ni + 1)piPioh + ofh). (24)
=1
Or, if Qe(t) = ne, kem(t) = kem, each £ € V,,m € V, except Ri(t) =n;+1 and
Qj(t) =n; — 1 for Za] € %a

Tp Tp

ZZC(m+ DpiPijh + o(h). (2.5)

j=11:=1

Or, if Qe(t) = ne, kem(t) = kem, each £ € V,,m € V, except Qi(t) = n; + 1 and
k‘i]‘(t) = k‘i]‘ — 1 for ¢ € ‘/p,]' € V;,

i f: C(?’Ll + 1)[1,1‘P1'jh + O(h) (26)

J=rp+11=1

Now, we assume for a moment(in fact, this is the solution of Theorem 2.6)

that

Fi(ny, kyy) = P{Qi(t) = ni, Ki(t) = kij i € Vp,j € V)

—pr=pg
- ﬁ " _p, II exp(—6; Pjt)(8: Pit)™

i=1 ai(ni) i€V, ki]'! )

(2.7)
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where

ai(ni) = n;! if n; <
e stTHgl if ng > sy,

p; and §; are given in (1.1) and FPy; such that Poi - moeo £r ‘lai(n;) = 1.
Then we have the following results.

Lemma 2.3. Suppose that Pi(n,,k,,) is given in (2.7). Then

P —=pq

Rp, pq +2Pf po pq

1=1
Tp
ZPt(nla P 13 R klO) kl'rp+1) ey kqua vy k(i—l)rqa
k‘iO - 1) kirp-i—la v ‘rp'rq)C(nt + 1)""11310
Tq Tp
+ Z ZPf(Tll,...,ni-F1,...,Tl1-p,k10,...,kij —1""’k7‘prq)
J=rp+1i=1

C(ni + 1) pi Py

Tp
+ Z ZPt(nl,...,m—(—l,...,nrp,kpq)C(m-i-1)/-LiPij.

FE(VpUVy)e i=1

Proof. Take differentiation with respect to ¢t in (2.7). Then we have

P(np, kpy) = Prlny: k) [ Z Z kij — iz 6iPij] (2.8)

i=1 j€V, =1 jeV,
Tp T
:Pt(ﬁp’hpq)[ Z Z kij — Z‘Si(l'—zpﬁ - Z Pf]')]
i=1 j€V, 1=1 Jj=1 JE(VpuVy)©

Since §; = A; + E;.’;l 6;P; for i = 1,...,7, by the assumption of the set of
(V, UV,)¢, we have that

Zpt 1, ko) Xi = ZPt kye) (6 —25 Pj:). (2.9)
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Next, one may easily show that

@)t 1) g ik ai(—1) =1 for all my > 0. (2.10)
ai(n; +1)

Using (2.10),

Tp
Z P(ny,...,ni+1,... s Mrps k1o, klr,,+l, ceey k’qu, ceey k(i—l)rqa

kio — 1, kirpa1s oy Brprg )¢ (i + 1) s Pig

ai(n,-) /C,'O

=2 Pi(n,, kpy)pi it uib;
; t(EZ”—Pq)p ai(ni+1) 61.P,0t4(n + )'U 0

= “Zpt(np, pq (211)
And

Tq Tp
Z ZPi (n1,eeoni+ 1, ne ko, ki = 1, ke )C (i + D pi Py

J=rp+1 =1

Tq Tp a(n) k
= Pu(ny, kpg) pi——— = i+ DB
j=§+1§ t(1p, Kpg )P ailni £ D) 5Pt (n )i Pij
Tt 42 Zpt Ry, &, (2.12)
j=rp+11=1

Finally,

"p
Z ZPt(nl,...,ni+1,...,nrp,_lgpq)C(m—f—l),uiPij
JE(VpUV,y)© 1=1

= Z Z Pt(_n.p) qu)ﬂt%((nz + 1)/“Pij

JE(VpuVg)e i=1

Z ZPf Bp, pq P ‘ (2-13)

FE(VpUVy)e i=1
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Thus, by (2.8),(2.9),(2.11),(2.12) and (2.13), the claim follows.

Lemma 2.4. With Pi(n,,k,,) given in (2.7), we have

ZZP'? (1 kpg )C (i) i P

7=01=1

Tp
= ZPt(nl,...,n,- =L Ny, Kpg) A
=1

Tp Tp

+ ZZPt(nl,...,n,- +1,...,n5 =1, 00,k )C(ni + 1) i Pij.
j=11i=1
Proof. Since Zf’:o Pj;=1,

N 7p

Z Z Pt Ny, pq ):uiPiJ - ZPf (})C('n’ﬂ),u'1 (214)

7j=014=1 i=1

And, by (2.7),

Tp Tp )\1,
Z-Pt(nla N (e 1) st anrpakpq)’\i = Z‘Pt(ﬂpikpq)C(nl); (215)
i= 1=1 i

Note that a;(n;)/a;(n; — 1) = ((ne) for all n; > 0. Thus, with (2.10) and
b; = A + Z;il 5]'Pj1' for ¢ € V;,,

s Tp
Z ZPt(nl,...,ni+l,...,nj—1,...,n,p,&pq)((ni+1),uiP,~j
=1 i=1
P Tp a(n) a(n)
== Pi(n,, k A pi——— ni + )i B
;; 2, "pq)Pjaj(nj—l) a,-(n,--{—l)C( uiEs
Tp Tp
L
—ZZPt(nzn—pq ] (nJ)
j=11=1

_ZPf Npy Kpg /;J n; Z(SP,]
=1

7=1 J
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IZ Ty Kpg ?C(nz’)(@—/\j)

2

A
Z L pq ZP‘? By, pq J')_J'-

j=1 Pj

(2.16)

Hence, by (2.14)—(2.16), the proof follows.

Theorem 2.5. Qi(t), Ki;(t),1 € V,,7 € V, in equilibrium are mutually in-
dependent and each Kj;(t),: € V,,j € V, is independently Poisson distributed
with intensity é,;F;;.

Proof. From (2.1)-(2.6), we have the marginal differential equation:

P’(np’kpq)
= ZPt Ny, kpg) Zzpi(np’-pq)(:(ni)#t ij
7=01i=1

Tp
+ZPt(n1,...,n,~ — 1, Ny, Epg) A

i=1

"p
+ Z-Pt(nl, S 1a LY klOy klrp+1> teey kqu’ RN k(i—l)rqa

=1
kiO - 17 kirp+1) ey k?‘prq)C(ni + l)ﬂt-Pto

"p Tp

+ZZPt(nl,---ani+1a---anj —1,...,nrp,kpq)§(ni+1)piP,<j

j=11:=1

Tq Tp
+ Z ZPt(nl,...,ni-l—1,...,n,p,k10,...,k,~j—1,...,krp,q)

Jj=rp+1i=1
“C(ni + 1)pi By (2.17)

Since Kj;(t),: € V,,j € V, are counting processes, they must equal to 0 for all
7,) at time ¢t = 0 almost surely. And since the queueing network is supposed

to be in equilibrium at ¢ = 0, (2.16) with a proper form of P;(n. ) is subject

P’ Pq
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to the initial condition

ny

):{ [T, 2Py if all ki =0,

1=1 g, (ni)
0 otherwise.

Po('n ]C

—=p?r—=pq

(2.18)

To verify the assertion of the Theorem, it suffices to show that (2.7) satisfies
(2.17) since (2.7) is trivially true for the condition (2.16). But this claim hold

immediatly from Lemma 2.3 and 2.4.

Theorem 2.6. The output processes K;j,¢ € V,,j € V; in equilibrium

are mutually independent Poisson processes with respective intensities 6; F;;.

Proof. The vector (Qi(t), Ki;(t),¢ € V;,5 € V) is a Markov process as
stated in Remark 2.2. Thus, by Corollary 1 and Theorem 4 of Beutler and
Melamed and Theorem 2.5, we have the claim.

For specific case,let £ = 3 in the canonical decomposition p given in (1.2)
and V, = C1,V, = C;U {0} for an open Jackson network with all nodes having
single server. Then, we have the following result which is the work made by
Beutler and Melamed(1978).

Corollary 2.7. When we define V, = {1,2,...,r} and V; = {0,r +

1,..., N} in a single server open Jackson network, the same claims of Theorem

2.5 and 2.6 hold.

Owing to Theorem 2.6 and Corollary 2.7, one may say that the output
process on exit arc (7,7) depends only on the total input parameter é; and the
transition probability P;; regardless of the number of servers working on nodes.
Moreover, we may also consider an exit set as a sub-open Jackson network of
the entire open Jackson network when the entire open Jackson network is in
equilibrium and departure processes of the sub-open Jackson network is again

Poisson processes as shown in the entire open Jackson network.
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3. EXTREME VALUES FOR NO FEEDBACK NODES
IN A MULTIPLE OPEN JACKSON NETWORK

Jackson networks have been proved useful models for queueing and com-
puter systems with applications to military command and control modelling,
public utility models for police, fire, and medical emergency system design
etc.. A typical question is how to determine the size of some subset of in-
terested nodes in order to successfully manage service demand to a system
for a long future period. Namely, this section gives emphasis on derivation
of an asymptotic behavior of maximum queue length for no feedback nodes
in multiple servers open Jackson network. Anderson(1970) showed that when
X1, X2, ..., X, are integer valued i.i.d. r.v’s with distribution function F such
that (1 — F(n))/(1 — F(n+1)) — ¢%,¢ > 0 as n — 00, bounds of the limiting
distribution of M,, = max{X;, X5,...,X,} are given by

limsup P{M,, — 3, <z} > exp[—e“dz_])]

N—+CO

and
ligg}fP{Mn — B, <z} <exp [_e—Cr] for all z,

where [, is determined by
1
1 — F.(B,) = — for sufficiently large n (3.1)
n

in which F(z) = 1 — exp(—h(2)), he(z) = h([z]) + (z — [z])h(([z + 1]) —
h([z])), h(n) = —In(1 — F(n)) and [.] is integer operator.

Many authors have dealt with extreme value theory for a single queueing
system other than networks for the case of null recurrent queueing systems
which is, in fact, the basic requirement of existence for maximum queue length
distributions. Let X (t) be the queue length at time ¢t and T, be the n-th visit
time to state 0 of process X(¢) in which [T}, T;41) is called 7-th busy cycle. Ser-
fozo(1988a,b) provided asymptotic distributions of M,, = max{X(¢),0 <t <
T.} in M/M/s,M/G/1 and GI/M/1 queue systems even for positive recur-

rent processes with appropriate assumptions. However, Serfozo’s works have a
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defect in practical applications since the time period he considered ,i.e., [0, T}],
is a random time period and thus not observable in advance. McCormick and
Park(1992) filled this gap for M/M/s queue system by considering a general
time interval [0, ¢] instead of [0, T5,).

We will use Anderson and McCormick and Park’s method for the distribu-
tion of extreme value for no feedback nodes in multiple servers open Jackson
network with the results of section 2. Let Y; = max{X(¢),Ti-y <t < T;},t >
1. Then we know that if X(0) = 0,Y; are i.i.d. r.v’s by the strong Markovian
property. Furthermore, when X(t) is a queueing process of M/M /s queues
with arrival and service rate A, u respectively, then

s—1 [z] 1
p(mx)zl_[gk!(g)u;(:_s)*]- forz>s  (32)

by Chung(1967) and

L s (1)
sy

r=0

B(Ti~Ti) = 5 (33)

r!
by McCormick and Park(1992).

As indicated in Section 2, the total input processes to each node in a
network is generally not Poisson process but there are a set of nodes whose
total input processes are Poisson. Those nodes are as follows. Let U; be the

set of all nodes j such that P;; > 0.

Definition 3.1. A node 7 is said to be a bridge if U; is nonempty and is

not accessible from node z.

From the definition 3.1, U; is the exit set with respect to node :. This
implies that if a node ¢ is a bridge then the input process into the node
¢ is the Poisson process with intensity &; = A + 2 jep, 6;FP;i. Let My =
maxo<u<t @i(u) and Fy(.) and P,(.) be probability distributions with initial
probabilities Po(@;(0) = 0) = 1 and Pr(Q:(0) = ni) = m = pi*(ai(ni)) ! Poi as
given in (2.18), respectively.
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Theorem 3.2. Suppose that the processes {Q1(¢), @2(¢),...,Qn(t)} in
a multiple server open Jackson network are in equilibrium. If a node i is a

bridge, we then have

&) (Pz’/si)x ]
i/ Tyt (r) =1 (1 — r/s;)pt

limsup Pr{My < By + 2} < exp[—&,'(l —
t—00

and

iy (pi/s:)™"! ]
s/ 0 (r) (1 = r/si)prd

litminf PW{MM' < By + .’E} > exp[—&-(l —

where By = (—In(pi/si)) " {In([t]) + In(1 — p;/si)} and &; and p; are given as
(1.2).

Proof. Let Ny be the number of busy cycles of node ¢ up to time ¢. Since
node 7 is a bridge, the queueing process Q;(t) of node ¢ is a M/M/s; queueing
process with arrival rate §; and service rate y; in equilibrium. And thus the

expected length of busy cycle of node ¢, 7, is by (3.3)

L S (/s
S = pifs) ; S (34)

where p; = 6;/p;. Then it is obvious by renewal theory that

Ny 1, -
—tt- — — in probability as ¢t — oo. (3.5)
U

One can show by (3.5)(cf. Berman(1986)) that for any € > 0 and for sufficiently
large 1,

Po{ max Vi <zyu}+o(l) (3.6)

1<kL[tn; (1+¢))
< PO{Mti < $n’}

<P, Yie < 24 1), ) 3.7
- 0{1$ks[tnrl7?¥(l—6)] ke < +oll) (3.1)
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where Yj; = maxy,_, <u<t @i(w) with To = 0 a.s.. Then by Markovian prop-
erty, Y; arei.i.d. sequences for each ¢ with its distribution function F;(z) given
as (3.2) indexed by 7. It is then elementary to check that
. 1=F(n) _p

lim —————— = —

nveo 1—- F(n+ 1) S;
and Bni = (—1In(pi/s:)) " {In(r) + In(1 — pi/si)} satisfying (3.1).
Thus, applying Anderson’s approach (or Theorem 2.1 in McCormick and Park(1992))
into (3.6) and (3.7), we get

limsup Po{ My < B+ z} < exp [—77[1(1 + e)(%)m} (3.8)
t—o0 :
and
liminf Po{ My < B+ 2} > exp[-n7' (1= (2)7]. (39)

Let 7; = inf{u > 0; Q:(u™) # 0 = Qs(u)} and M,; = max,,<uc: Qi(u). And

note that, for a fixed positive integer 7,
F {Mti < wti} < Pﬂ{Mti < ﬂfti}

< Po{ max Qi(u) < zu}+ Pe{ri > j}. (3.10)

0<u<lt~y

Assume for a moment that
lim P AM,; = M;} =1. (3.11)
Then for fixed j, by (3.8)—(3.11) with z4; = B + =

exp [—771-"1(1 — e)(%)x_l] < lim P {My; < B + 2}

< exp[-n7'(1+ ) (5)] + Par > ).

1

And then letting j — oo, we have the proof since € is arbitrarily small.

To end the proof, note that for a positive integer k,
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PoAM,; < My} = Pvr{ofg}fgg_ Qi(u) > max Qi(u)}

i <ult

< Prf{ max Qi(u) > k} + Pr{ max Qi(u) < k}. (3.12)

Since max{@;(u),0 < u < 7;} is nondefective by the assumption (1.1), the first
term of (3.12) will be vanished as k& — oo. It is clear by virtue of (3.9) that

max ®@:(u) — oo in probability

to make the second term of (3.12) to be disappear as t — oo.
Hence we have

lim P {My < My} =0
for (3.11) to be true. This completes the proof.

We now modify the process {Q1(¢), @2(t),...,@n(t)} defined from multiple
servers open Jackson network into a sequence of the process {Qgt](t), g](t), R
Qgg(t)} such that for each node 7, the [t]-th sequence of queueing processes
{QM(¢),t > 0} has total arrival rate §; = 6 and service rate pu; = py de-
pending on ¢. As indicated by Serfozo(1988a) or McCormick and Park(1992),
an advantage from the above relaxation is that we can avoid to the nonconver-
gence of My; exhibited in Theorem 3.2. Since we only consider bridge nodes
for asymptotic distribution of maximum queue length of the [t]-th sequence in
equilibrium up to time ¢, the problem is equivalent to investigation of distribu-
tional behavior for maximum queue length from a sequence of M/M/s queues
via results in section 2. McCormick and Park(1992) provided an asymptotic
results for extreme values generated from a single M/M/s queueing processes
with the dependency of parameters on time ¢t. Thus we can extend the result

of McCormick and Park to multiple server Open Jackson network as follows.

Proposition 3.3. Suppose that a sequence of the process {Qgt](t), Ce ng,](t)}
in multiple servers open Jackson network with arrival rates Ay, ..., Agn, ser-

vice rates pq,..., M4~ and transition probabilities Pi[;], t,7 =1,...,N. If
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node 17 is a bridge and for 0 < ¢;,d; < oo, with n; given as (3.4),

lim t(l - p—[tﬁ)z =¢ and tli.rgo 5[t],-(1 - M) = d;,

t—c0 8; 8

then

ln{1l — s~ o y
lim P[(M - n(l = s p) —(si—1))ln - < af
T In ;" pry Pt}

= exp[——i] in equilibrium,
nie®
where MY = maxgcy<¢ QP (u), 8y = Aggi + 20, 5§t]Pj[f]-

Proof. Since the node ¢ is a bridge, the queueing process of node 7 in
equilibrium is exactly same as M/M/s; queues with arrival rate ép; and service
rate pp; by Theorem 2.6. Thus by Theorem 2.4 of McCormick and Park the

claim holds.
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