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A Weak Convergence Theorem for Mixingale
Arrays
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ABSTRACT

This paper gives a generalization of an L;-convergence theorem for
dependent processes due to Andrews(1988) and also a probability con-
vergence theorem.

KEYWORDS: Weak convergence, Mixingale array, Uniformly integrable

in the Cesaro sense.

1. INTRODUCTION

Andrew(1988) combines a theorem on martingale convergence due to Chow
(1971) with techniques developed by McLeish(1975a, 1975b, 1977) to obtain a
law of large numbers for mixingales. Davidson(1993) extends these results to
allow for global heterogeneity, including cases where the moments of a sequence

are tending to either infinity or zero.
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Gut(1992) and Chandra(1989) provide a fairly general weak law for ar-
rays using a domination condition, namely, uniform integrability in the Cesaro
sense(UIC). The purpose of this note is to extend Andrews’ result to similar
type of mixingale arrays in Davidson(1993) satisfying condition (UIC). We
also consider a convergence in probability under similar type of domination
condition.

Let an array of pairs {X,:, Frni;—00 < t < oo,n > 1} be defined on a
probability space (2, F, P), where the X,; are random variables and the F,,
are o-subfields of F, increasing in T'. The array will be called an L,-mixingale
for p > 1, if there exists an array of nonnegative constants {c,;}, and also a

nonnegative sequence {(n}5° such that ¢, — 0 as m — oo, and
”E(Xnt!fn.t—m)“p < cntlm, (1-1)
HXnt - E(Xntlfn,t+m)”p < CntCm+1, (1-2)

holds for all ¢,n and m > 0. The sequence {(,,} is sometimes said to be of
stze Ao if (i = O(m‘)‘) for A > Xp. In the case where (,, = 0 for m > 0, the
array becomes a martingale difference (m.d.). The single-indexed case where
Xnt = Xy, Fut = F; and ¢y = ¢, for each n will be called a mixingale sequence.

An array {Xn, Fn:} of random variables is uniformly integrable in the
Cesaro sense if

itkn—1
sup — Z E\ X 1(| Xne| > a) = 0 as a — oo.

n, n t=1

[t is clear that uniform integrability is stronger than uniform integrability in

the Cesaro sense (see e.g. Chandra (1989, Example 2)).
The main results are the following.

Theorem 1. Let the array {X,, Fn:} be a L;-mixingale with respect to

constant array of {c,.} such that

(a) limsup sup curkn < o0,
n—o0 1Stskn
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kn
(b) limsup Y _cZ, =0,

t=1

(c) {Xnt/cne} is uniformly integrable in the Cesaro sense,

where k, is an increasing, integer-valued function of n and &, — oo as n — oo.

Then

lim £

=0l

= 0.

kn
Z Xnt
t=1

This is a very general result for which some special cases are more familiar
then others. The case where X,; = X;/a, where {a,} is a positive constant
sequence, and F,; = Fy, each n, is important enough to deserve stating as a

corollary.

Corollary 1. Suppose {X;, F;}{° is a L;-mixingale sequence with respect
to constant sequence {b;}$°, and {a,}{° is another positive constant sequence

such that

(a) supbin = O(a,),

i<n
(b) D_b = o(ay),
t=1

(¢) {X:/b:} is uniformly integrable in the Cesaro sense.

Then
= 0.

n
lim Ela! X
n—00 n ; t

It 1s easily verified that the conditions are observed when b; = ¢* for any
a > —1, by choosing a, = n'** for « > —1, and a, = logn for a = —1.
In particular, when b, = 1 for all £ and @, = n we have the result that
for a uniformly integrable in the Cesaro sense L;-mixingale of arbitrary size,
lim,— e E|Xn| = 0 where X,, = n7' 3%, X;. This extends Andrews’ (1988)

Theorem 1.
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Let X7, = XntI(| Xni/cnt| < k), where &, is an increasing positive integer-

valued function of n and &, — oo as n — oo.

Theorem 2. Let the array {X’,, F..;} be an L;-mixingale with respect to
y nt g

constant array of {c,:} such that

(a) limsup sup cukn < o0,
n—oo’ 1<t<kn,

t+kn—~1 X
n

1 7
(c) limsup— > aP{|="|>a}=0.
8= a4 kn t=1 Cnt
Then
kn

EXM — 0 in probability as n — oo.
t=1

Remark 1. Although Theorem 1 has a stronger domination condition
than Theorem 2, Theorem 1 is stronger result than Theorem 2 in that Theorem

1 shows Ly convergence(which implies convergence in probability).

2. PROOFS

We need the following lemma to prove Theorem 1.

Lemma 1. Suppose that {X,;, F.;} is a m.d. array satisfying condi-
tions (a) and (b) of Theorem 1, and where the array {|X,;/cn|?} is uniformly

integrable in the Cesaro sense, 1 < p < 2. Then

=0.

ti 55 X
t=1

IP

Proof. Let M > 0 and set, for 1 <t < k,,n>1,Y, = Xt L(| X | <
Mcy:) and Zny = Xp (| X s > Mecp:), so that X,; = Y, + Z,.,. With the aid
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of Burkholder’s (1966) and Davis’ (1970) inequality (1 < p < 2 and p = 1,
respectively) and the ¢,-inequality (Loéve (1977, p.157)) we obtain

kn kn 1012
E[Y Xl < BE|Y (X))

t=1 t=1

n p/2 Fn L|P/2
< BPE[;(YMH +B,,E,;(Zm)’

nt

kn
< B M”(Z )"+ BEY |z
t=1

t=1

B,,M”(inj )" + B,Ck; 1ZE|

t=1 Cnt

{2 > ).

Cnt

(A

Here B, is a numerical constant, depending only on p and C is a positive
constant. At first letting n — oo and then letting M — oo the conclusion

follows.

Proof of Theorem 1. If {X,;} is uniformly integrable in the Cesaro
sense it 1s easy to see that {E(Xu|Fn k) — E(Xnt|Fniwr—1)} is uniformly
integrable in the Cesaro sense by applying Theorem 3 of Chandra(1989). Fix
J, and let

Z[E nt,fntﬂ) E(Xntlfn,tﬂ—l)]-

The sequence {Y,;, nn+j}n=1 1s a martingale, and by condition (c) the array
{[E(Xnil Frt45) = B(Xnt| Frtrio1))/Cnty Fries} is uniformly integrable in the
Cesaro sense, and Y,; — 0 in L; by Lemma 1.

For M > 1,

-1 kn kn
Z Y;Lj - ZE(Xntlfn,t—{-M—l) - ZE(Xntlfn,t—M)a

j=1-M t=1 t=1

and hence
kn

ZXnt - Z )/nj + Z nt nt,]:n,t+M—-1)] + ZE(Xntl}-n,t—M)

j=1-M t=1
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The triangle inequality and the L;-mixingale property give

kn M
E ZXnt‘ S Z E
t=1 j=1-M

kn kn
Ya; +Z E|Xnt“E(Xnt|»7"n,t—M—1)l+Z E‘E(Xnt|fn,t_M)l.
t=1 t=1
The same argument as Theorem 1 of Davidson(1993) yields that above

terms goes to zero which completes the proof.

Proof of Theorem 2. We note that for each n > 2, ¢ > 0,

P{ Tty Xt — Th2 Xl > €} = P{URZ A Xne # Xne}} < iz P{IXne] >
Cntkn} = ﬁzfil knP{|Xnt/cn:] > kn}, so that the condition (c) entails
Tk Xnt — 2F, X!, — 0 in probability. Thus to prove the theorem it suffices
to verify that 3% X!, — 0 in probability.

Fix j, and let Y/, = ¥5n [E(X} | Faivi) — E(X )| Fatsj-1)]. We first show
that E(Yn;)? —» 0 as n — oo, and hence Y; — 0 in probability. Since
E(XL | Farei) — E(XL | Fursi-1), 1 < i < ky, form a martingale difference
sequence and hence are orthogonal elements of L? and E((E(X.,|Fni+j) —
E(X:ztlfn.tﬂ-l))z < E(X:u)2, we have

kn , , 2
E(Yy)? = E(L[B(XiulFuiss) = B(Xrel Fussiaa)])
t=1

IA

kn
> E(X,)
t=1
kn kn

= 22

t=1j3=1

/ X2,dP
{i-1<|Xne/cne]<5}

kn kn
>k Y (Pl Xne/enil > 5= 1} = P{|Xae/cat| > 53)

<
t=1 J=1
kn

= 3 & [P{IXat/Cntl > 0} = B2 P{|Xat/Cnc| > k)
t=1

kn—1

+ X_: (G + 1) = ) P{| Xt/ Cnt] > j}]
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b kn
< Ve a X[+ 17 - PUXed > 1))
t=1 J=1 t=1

k?l k"
S Zcm +CQZZ]P{IXnt/cnt[ >]}cnt

7=11t=1

kn kn

< Zcm +c3]c2 o> iP{IXut/cnel > 5},

n j=11t=1

where ¢1, ¢; and c3 are unimportant positive constants, the third equality comes
from Lemma 5.1.1(4) of Chow and Teicher(1988) and the last inequality comes
from (a). By (b), the first term above goes to zero as n — oo and by (c) the

second term goes to zero.

Now we can write as in the Theorem 1,

kn kn
Zleu - Z + Z[Xrlzt - E(X;tlfn,HM—l)] + Z E(lemtlfn,t—M)'
j=1-M t=1 t=1

Then
P{]i){ > ¢}
t=1

Y v

(Xl Frisnmr-1 ]‘ > 6/3}

IN

kn
+P{|2 E(Xp | Fri-m)| > €/3}
t=1

M € 3 &n
< Z P{]Y,:jl > W}-l— ZE| (Xnt| Frt—nmr-1)l
1=1-M N

3 &
+= 2 BIE(X | Fue-mr)]
¢ =1
Now by similar argument as in Theorem 1 of Davidson(1993), we can show

that S°% X!, — 0 in probability, which completes the proof of theorem.
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