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ABSTRACT

For a distribution on the unit sphere, the set of eigenvectors of the
second moment matrix is a conventional measure of orientation. Asymp-
totic confidence cones for eigenvector under the parametric assumptions
for the underlying distributions and nonparametric confidence cones for
eigenvector based on bootstrapping were proposed. In this paper, to re-
duce the level error of confidence cones for eigenvector, double bootstrap
confidence cones based on prepivoting are considered, and the consis-
tency of this method is discussed. We compare the performances of
double bootstrap method with the others by Monte Carlo simulations.
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1. INTRODUCTION

An appropriate eigenvector of the second moment matrix of the underly-
ing distribution can be used as a measure of the spatial orientation of the
underlying distribution. Kim(1978) and Watson(1983) discuss the usefulness
of eigenvector. In section 2, asymptotic confidence cones for eigenvector are
reviewed. A nonparametric approach based on bootstrap to construct confi-
dence cones for eigenvector has been conducted [Shin(1987)]. But the level
error of confidence cones is substantial, even at relatively large sample sizes.
In this paper, to reduce the level error of confidence cones for eigenvector, a
double bootstrap method of constructing confidence cones for eigenvector via
prepivoting is proposed.

Let X be a random vector on the unit sphere 5% in R with distribution F.
An eigenvector of the second moment matrix Mg = E(X X') of X is denoted
by e(F). A consistent estimator of e(F') is e(]f’n), where F), is the empirical
distribution based on observed values of the random sample z,,...,z, from
F. A confidence region of level (1 — a) for e(F) is the cone, ', with axis e(F)
and semi-angle ¢,(F'), defined by

C={ves: [ve(Fn)|> da(F)} (1)
where @, (F') is chosen so that
Pri{e(F,)eC}=1-a.

Solutions for ¢,(F) have been proposed, but they require imposing certain
parametric assumptions on F. With these assumptions, it is shown that a
pivotal quantity

P(F,,F) = 2n[l — {e(F)e'(F,)} . (2)

has a nondegenerate asymptotic distribution, usually depending on F in a
simple way. Hence, from this it is possible to estimate ¢,(F) by ¢Q(Fn).
Examples of such assumptions are

(I) F is the Bingham distribution with parameters K = (ky, k2, k) € R®
and orthonormal vectors u;, p2, 3 € S% [Mardia(1972)] and density f(z) =
d(K)exp(ki{phx)? + k2(phx)? + ks(phx)?}, where d(K) is the normalizing con-
stant.
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(II) F has a density of the form f(z) = g(p'z) so that F is rotationally
symmetric about y, where || x ||= 1. The density in (I) with k; = ks = 0,
which are called the Dimroth-Watson distribution, is a special case of (II).

Shin(1987) proposed a nonparametric method of constructing confidence
cones for e(F) based on bootstrap. It used the bootstrap in estimating the
sampling distribution of the pivot (2) and consequently constructing confidence
cones from this sampling distribution. But, the actual level of the approximate
confidence cones differs substantially from the intended level, even at relatively
large sample sizes.

We propose a pivotal quantity based on prepivoting

P(E, Fy) = 201 — {e(Fy)e'(F,))] (3)

where F,” be the empirical distribution based on observed values of the random
sample from F, and e(fﬁn*) is a bootstrap version of e(F,). In section 4, the
double bootstrap procedure for approximating the sampling distribution of
P(Fn*, I:"n) is presented and shown to be consistent under minimal conditions.
Hence from this result, it is possible to estimate ¢,(F) by ¢a(ﬁ’n*). In section
5, our double bootstrap confidence cones are compared empirically with the
asymptotic confidence cones and Shin’s simple bootstrap confidence cones in
terms of coverage probabilities by Monte Carlo study. It is illustrated that
our-double bootstrap confidence cones for e(F') have smaller errors in level
than the others. Finally, in section 6, a data set is analyzed using the method
developed.

2. ASYMPTOTIC CONFIDENCE CONES FOR
EIGENVECTOR

In this section, we review the parametric approach of constructing a confi-
dence cone C of the form (1) about e¢(F). Even though the Dimroth-Watson
distribution is the actual underlying distribution we will be working with, we
will construct the confidence cone under more general setting of the rotational
symmetry.

Viewing a probability distribution on S? as a mass distribution on S2, we
may make an analogy with the problem of finding the orientation of a rigid
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body. We can use the orthonormal set of eigenvectors of the corresponding
matrix of a spherical distribution as a measure of orientation of the distribu-
tion. When n points with unit masses are placed at z,,...,z,, the moment
of inertia of these masses about direction a, where || a ||= 1, is given by
a'(I — Y%, z;x!)a. Since the spectral decomposition of I — "7, z;z; and

»_, z;x! are obviously related, given a probability distribution F' on S? we
may correspondingly consider a simpler matrix Mg = Ep(XX'), the second
moment matrix. For the random sample z,,...,z, from F,

Mg = Epgzd’ =n"'Y 7}
i=1
which can be served as a consistent estimator for Mg.
Let X be a random vector on S? with f(z) = g(y'z), where || || = 1. Put
t = p'z and assume that Et > 0. For all z € §?, we can write

z=t€+(1—1})ip

where € = up'r and n = (I — pp')z. The spectral decomposition of Mr is
given by
o 4 1 —Et? , . 1—- Et?
Mp = (EC)up'+ ——(I~pp'); Ay = Et" and Ay = ——.
In this equation, ), is the largest eigenvalue of multiplicity one and g is the nor-
malized eigenvector corresponding to A; which happens to lie in the direction
of the axis of symmetry. For the Dimroth-Watson distribution, g is the non-
degenerate eigenvector, and the corresponding sample eigenvector becomes the
maximum likelihood estimator for x.
Applying the perturbation theory with random perturbation {Watson(1983)],
it is possible to show that

Vi An — A1) = tr(Goppt) + Op(n';')
4, N(0, var(t2))
where G, = \/E(Mﬁn — MFp). Now that G, has the limiting Gaussian dis-

tribution by multivariate central limit theorem, we can view M as a small
linear Gaussian perturbation of Mp. Asymptotic distributions of orthogonal
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projection P, are given by

V(P — P) = a(pi' — py')

2 -1
=3 —TWn+ Wo) + 0p(n72)
where W, = up'Gn(I — pp'), and ji is the eigenvector of My corresponding
to il-
To describe the accuracy of ji as an estimator for 4, we need to consider
pivotal quantity

P(F,,F)=2n{1 - (u'@)?}.
Theorem 2.1 (Watson(1983))

N 4(Et? — EtY)
E, F)-4, 22 750 ) 2
PiFn, F) = (BEtz—1)2 2

This theorem enables us to construct an approximate confidence cone with
axis ji and semi angle 0 as determined by the asymptotic distribution of the
pivot P(F,,F). Since both of Et? and Et* will be unknown in practice, we
can use their consistent estimators;

n n

Et2 = Z(ﬂ’.’[,‘f/ﬂ, Et4 = Z([z'm;)"/n.

=1 =1
Hence, under the rotational symmetry, an approximate level (1 — @) confi-
dence cone for the nondegenerate eigenvector 4 is given by

_ 2 1AN2 Q(E(ﬂ’x,-)2 - Z(ﬁil'i)4) 2
Cas={veS?|(Va)}>1- BX(iz)? = n)? cla, x3)}

where c¢(a, x3) is the upper a - percentile point of x2.
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3. BOOTSTRAP CONFIDENCE CONES FOR
EIGENVECTOR

In this section, we review the nonparametric approach of constructing con-
fidence cone based on the bootstrap distribution of the pivot (2).

Let zy,...,z, be independent and identically distributed random vectors
with unknown cumulative distribution function F. Efron(1993) discusses a
bootstrap method for approximating the sampling distribution of a function
of the observations and the underlying distribution F'. We call the approxima-
tion as the bootstrap distribution. Let P(F’n, F) be a real valued function of
zy,...,T, and F, where F, is the empirical cumulative distribution function
putting mass 1/n at x; for : = 1,...,n. Let J,(., F) denote the cumulative
distribution function of P(ﬁn, F). Then the bootstrap estimator of J,(., F') is
Juley ﬁ’n) which is the cumulative distribution function of P(FA’n*, Fn) where FA'H*
is the empirical cumulative distribution function of the random sample drawn
from F,.

Beran(1991) gives general conditions under which the bootstrap distribu-
tion as an estimator for the sampling distribution of the pivot is consistent.

Theorem 3.1 [Beran(1991)] Let Cr be a set of sequences {F, € F :
n > 1} such that Pr{{F,} € Cr] = 1. Suppose that for every sequence
{F,} € Cp,Jn(.,F,) — J(.,F) a limit distribution depending only on Cf.
Then {J.(., F,.)} converges weakly to J(., F) w.p. L.

Let F be the class of all cumulative distribution functions F on S?. Let
X be a random vector on S? with F. We will assume that F' is rotationally
symmetric. For any p x p symmetric matrix A = {a;;}, let uvec(A) denote
the ﬂ”2—“)- dimensional column vector {{a;;;1 < ¢ < j}1 < j < p} formed from
the elements in the upper triangular half of A including diagonal elements.
Suppose that Zp = {zF,;} is a symmetric p x p random matrix such that the
distribution of uvec(ZF) is normal with mean vector 0 and covariance matrix
Qp. If F has finite fourth moments, the distribution of {\/n(Mg, — MF) |
F;n > 1} converges weakly to N(0,r).

We have the following result from Shin(1987) :

Theorem 3.2 )
Ju( F) = J(,F) wp. 1
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where J(., F') is the distribution of the random variable 1 || P(Mp)uvec( Ze) |,
and J,(., FA'H) denotes the distribution of (2) under F,.

A

A confidence region for e(F’) is the cone C, with axis e¢(F),) and semi-angle

oo (F') defined by
C={ve S| (Ve(F)) 2 ¢alF)}
where ¢,(F) is chosen in such a way Pr[e(F) € C] = 1 — a. The bootstrap

confidence cone Cp is given by,

Co = (v eS| (We(Fa) 2 1 — ——c(a, )}

2n

where c(a, F,,) is an upper a-percentile point of J,(., F,,). The limiting

distribution J{(., F) is continuous in X and strictly increasing because uvec( Zp)

is continuous function. Therefore, lim,_.., Prje(F) € Cg] = 1 — « for all -

FelF.

4. PREPIVOTING

Prepivoting[Beran(1987, 1988)] is the transformation of pivotal quantity
by its estimated bootstrap cumulative distribution. The pivotal quantity
P(FE,,F) is transformed into P(F, , F,) = Jo(P(E,, F), F,) whose limiting
distribution is uniform (0,1). Let J,(., F') denote the cumulative distribution
function of P(F,,F), then the bootstrap estimator of J,(., F) is Ju(., Fy).
Then the prepivoted double bootstrap estimator of J,(., F') is Jn(., F’n*), the
cumulative distribution function of P(F’n**,Fn*), where F.” is the empirical
cumulative distribution function of random sample z}*,...,z>* drawn from
E.”. We call Jo(., ﬁ'n*) double bootstrap estimator of J,(., F'). Bootstrap con-
fidence sets generated from a pivotal quantity prepivoted one or more times
have smaller level error than confidence sets based on the original quantity.
Further iterations of prepivoting make higher order corrections automatically.

In this section, we proceed to construct double bootstrap confidence cone
for e(F). We will assume that F is rotationally symmetric throughout this
section. Now we will proceed to show that the double bootstrap distribution
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Jo (., F,") of the pivot (3) has the same limiting distribution as J,(., F).

Theorem 4.1 If J,(., F, ) denotes the d]StI‘lbutIOIl of (3) under E, and
if J(.,F) is the dlstrlbutlon of the random variable 1 || P(Mp)uvee(Zg) ||
where uvec(Zg) ~ N(0,8F) then

LI

J(,F, ) = J(LF) wp. 1.

Proof. Define Cr as the set of all sequences { F,,,n = 1,2,...} of cumulative
distribution functions in F such that

1) {F.} > F

(1) lim,_o, E(XX' | F,) = E(XX' | F) and limp—.. E(XX'XX' | F,) =
E(XX'XX'| F) for the data set {z;;1=1,...,n}.

(II) trMp, = 1.

First, we want to show that Pr({FA’n‘} € Cr) = 1. By the Glivencko-
Cantelli theorem, F, — F w.p. 1. Since the sphere is compact, we have
limp_oo E(XX' | E,)) = E(XX' | F) and lim,—o E(XX'XX' | £,) =
E(XX'XX' | F) by using the strong law of large numbers. Since F s a
distribution on 52, trMﬁn- = 1. Hence

P{F, ,n=1,2,..}€Cs =1 (4)

Let {F,} € Cr and zy,,..., 25, be a sample from F,,, with the empirical
distribution F,,. Since Mg, = (7, — pr, )(@n — F, ),

Va(My, - Mg,) = \/ﬁ{ = 2 I I ) — i)'}

n n
= Z{(wz pr @i — pr,) — (8, — pe @0 — prE,)'}
— \/_ — 1tr, ) (&0 — pir,).

Let Z, ;. = (z; — pp, )i — pg,) — (€ — ¢r, )(€n — pF,) s then
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n
-1 _ _
VA(Myg, ~ Mg) = VA~ Y 2o~ Vil — b5, ) = 15,
=1
Let a be any constant column vector of dimensional ﬂ”.‘,il. Let G, be the
cumulative distribution function of a’uvec(Z, ;) under F, and let G be the cu-

mulative distribution function of a’uvec(z;z; — M) under F. Since {F,} € Cr,

G,.— G
and
lim [ydG.() = [¥dG(y) = ¢pa.
Thus
lim Ep,[d'uvec(Z,;)]? = a'Qra < o0
and

Jim Er,ld'wvec(Z, ) I[d'wvec(Z, ;) > V/nb] =0

for every positive §. By the Linderberg central limit theorem for a triangular
array

a'uvec(n'% Z Zy; | F) — d'uvec(Zp) ~ N(0,a'Qpa).

=1
Hence

[n~% Z Zni | Fu] — Zp (5)

where Zp ~ N(O,;;).
From L[\/n(Z, — pr,) | Fo] — N(0,Qp),
V(& — pp,) (&0 — pr,) — 0. (6)
From (5), (6),
LVn(Mg, — MF,) | F.] — N(0,Qr). (7)

By idempotency and symmetry of eigenprojections,
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| P(Mg,) — P(Mp) |P= 2[1 = €(F)e(F)]

where P(Mp) = e(F)e(F) and P(Mg ) = e(F,)e(F,). Since P(M) is contin-
uously differentiable function of uvec(M), by expanding P(Mf,) about Mp,,

P(Mg ) = P(Mp,)+ P(Mp,)(Mg, ~ Mg,) + Op(|| Mg, — MF, |)).

Thus
= n{l - [¢(F)e(F)I*)

P(F,,F,)
I %“ VA(P(Mg) — P(ME,)) |1
- %” P(Mg,)Wa(My, — Mr,) + Op(|| Va(Mg, — Mp,) |I) |1

By Mr, — My and (22), Op(|| VA(Mp, — Mg,) ||) = Op(1). Hence by
Slutsky lemma and (7)

P(Fuy F) — 3 | P(MpJuvec(Z) | ®)

where uvec(Zp) ~ N(0,QF).
From (4), (8) and Theorem 3.2, w.p. 1

Tuls BuT) =25 £03 | P(Mr)uveclZ) |
where uvec(Zp) ~ N(0,QF).
If Cg. is the double bootstrap confidence cone for e(F),
Cor = {v € S | (el 2 1~ 5-cla, £27))
where c(a, F,, ) is an upper a - percentage point of J,(., E."). Because uvec(Zr)

is continuous function, the limiting distribution J(., F') is continuous in X and
strictly increasing. Therefore, lim,,_,., Pr{e(F) € Cg.]=1—aforall F € F.
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5. MONTE CARLO APPROXIMATION

A Monte Carlo simulation was performed to study and compare the per-
formance of the procedures introduced above. We choose to look at the case
p = 3. For the simulation, we took pseudo-random samples from the Dimroth-
Watson distribution with special values u(F) = (0,0,1) and k = 0.1, 1 and
3.

For a = 0.05, the coverage probabilities of confidence cones of C 45, Cg, Cg»
were computed. Each cone was obtained from 200 bootstrap replications. It

193

was checked if they contained u(F). This was repeated 1000 times in order '

to get an estimate of coverage probability. The results of this simulation are
shown in Table 1.

Table 1. Coverage probabilities of the confidence cones (o = 0.05) based on
n observations from the Dimorth-Watson distribution D(k,(0,0,1)).

n 10 20 40 50

k 61 10 30 |01 10 30 (01 1.0 3.0 |01 1.0 3.0
Cp+ || 623 878 .913 | .744 .890 .931 |.778 .905 .936 | .792 .910 .937
Cg .588 .821 .898 | .702 .870 .908 | .776 .879 .931 | .791 .885 .934
Cas || 651 .835 .909 | .707 .854 .924 | .760 .881 .938 | .781 .889 .930

Replications - 200 times, trials - 1000 times.

The double bootstrap confidence cones, Cpg., perform well for sample size
greater than 20 and k greater than or equal to 3. And the level error in the
double bootstrap confidence cone is more stable than the level error in the
simple bootstrap confidence cone. Double bootstrap procedure is less strongly
dependent upon F' than the distribution of simple bootstrap procedure. More-
over the double bootstrap is easily implemented on a computer. The reliable
method in these cases presented here is the double bootstrap method. And
prepivoting can be repeated to reduce level error further.

6. EXAMPLE WITH REAL DATA

Table 2 gives the data listed as 33 measurements of L} axes (intersections
between cleavage and bedding planes of F folds) in Ordovician turbidites. The



194 Double Bootstrap Confidence Cones for Spherical Data

coordinates are plunge and plunge azimuth. The data were recorded by Pow-
ell, Cole and Cudahy [Fisher(1987)]. These geological coordinates are mapped
into polar coordinates by the relations [Fisher(1987))

8 = 2r(P + 90°)/360°(—90° < P < 90°)]

6 = 21(360° — A)/360°(0 < A < 360°).

Table 2. Measurements, in degrees, of plunge, P, and plunge azimuth, A.

P Al P Al P A|P A| P A
-5 12| -1 17 (-10 91 8 342 0 12
8 o -7 41-13 21 3 4 -7 4

5 15| -1 2(-12 353 (11 350 3 9
15 355 3 344 0 21-9 359 0 12
-11 10(-13 14 0 12y 1 13 3 353
10 3| 12 41 15 347 | -6 21-13 7
-17 354 25 4 0 4

All methods discussed above were applied to this data set. The results are
shown in Table 3. We have similar results from all methods. But the semi-
angles of the double bootstrap are some what larger, particularly for the 0.99
confidence cone.

Table 3.Confidence region C, cosine of the semi-angle.

l-a || Cp- Cg Cas

0.90 | 0.9967 0.9984 0.9981
0.95 || 0.9958 0.9980 0.9976
0.99 {{ 0.9928 0.9970 0.9962
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