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ABSTRACT

Let Fy and F, be two F ratios with independent numerators and
a common denominator. They are known to be positively dependent.
The probabilities of simultaneous rejection and conditional rejection are
numerically computed for both null and nonnull cases, The probabil-
ities are presented in tables and graphics to show the influence of the
seven parameters, the degrees of freedom of the numerators and the
denominator, the non-centralities of the numerators, and the two lev-
els of significance of the tests. The values of the correlation coefficient
between F; and F, are also presented. Finally, a conjecture on the
dependence order of the family of distributions of (Fy1, F?) is given.

1. INTRODUCTION

Several statisticians have studied dependent F ratios with independent nu-
merators and a common denominator. Kimball (1951) evaluated the effect of
dependency among the tests of significance, when each experiment is treated as
a unit regardless of the number of hypotheses tested per experiment. He proved
that the joint significance level of two dependent F tests is greater than that
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of independent F tests. Hurlburt and Spiegel (1976) illustrated this result by
numerically evaluating the joint distribution of dependent F ratios for various
degrees of freedom. By the numerical integration using the trapezoidal-rule,
they evaluated the conditional probability under the null hypothesis that one
F ratio is significant, given that another F ratio sharing the same denominator
mean square is significant. They showed that the conditional Type I error is
significantly larger than the unconditional Type [ error.

Johnson and Herr (1984) discussed and computed the case where the two
numerators are also dependent. They called such F’s ‘doubly dependent’
in contrast with ‘simply dependent’ /’s, whose numerators are independent.
They used series, not numerical integration, for computing the power of the
test. Many related papers are listed in their paper. Feingold and Korsog (1986)
gave an explicit form of the correlation coefficient between two dependent F
ratios for the nonnull case, and showed that the joint or conditional powers
of dependent F' tests are approximated by simple functions of the correlation
coefficient.

In Section 2 of this paper, joint and conditional powers of ‘simply depen-
dent’ F’s, for both null and nonnull cases, are computed. The degrees of
freedom of the numerators are restricted to ‘even’ integers. Hence the powers
can be more easily and exactly computed by series or double series. Numerical
results are presented in two tables and six graphics. Influence of the seven
parameters is discussed.

The correlation coefficient between two F’s has a simple closed form. In
Section 3, the values of the correlation coefficient are also shown in table and
graphics. In Section 4, the last section, the dependence order in the family of
distributions of (Fy, F3) is discussed, and a conjecture is given.

2. THE CONDITIONAL PROBABILITIES

Consider the following two way analysis of variance ( ANOVA ) table:

Source Sum of squares degree of freedom F ratio
Row SSh " Fy = (SSr/n)/(SSE/V) (1)
Column 5S¢ v F, =(5Sc/v2)[(SSE/V)

Error SSE v
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The null hypotheses H; and H, assume no row and column effects, respectively.
Under the normality assumptions, the critical region where H; is rejected is F; > a;,
where a; is the upper a-quantile of the F' distribution with a pair of degrees of
freedom (v;,v), i = 1,2.

Let G 4(r) denote the gamma distribution with the probability density func-
tion f(z;r) = z™"! e [/ T(r), = > 0 and r > 0. Let NeG4(r,6) denote the
non-central gamma distribution with the probability density function f(z;r,é) =
Sz (585 kY f(x;r + k), > 0,7 >0 and 6 > 0. Recall that if r is a positive
integer the distribution function F(z) = F(z;7) of G z(r) is written as

F(z) =1~ F(z;r) = / ftyr)dt = E e Tak/ k!, (2)
0<k<r
The F statistics in the ANOVA table can be represented as F; = vX;/v; X, i=1,2,
where X is a G 4(v/2) variable, and such that X; is a G 4(v;/2) variable under the
null hypothesis H; , or a NcGa(v = 12,A = 12) variable under the alternative
H, respectively, i = 1 and 2. ); is the noncentral parameter of the noncentral F
distribution of F; under H}. All the variables X, X; and X, are independent. For
simplicity , we write m = v/2 , and m; = 1;/2, i = 1,2. It is following that we
obtain exact formulas by using probability integral transformation of Peason, K.
(1] The joint power ( the probability of simultaneous rejection of Hy and H, )
in the null case is

Pr((Hy N H3)|H1, H]
= PT[F] >a; and Fp > (l2]

= Pr[X; > nXay/v and X3 > v, Xay/v]

= /000 7(011' ;ml)f(ﬂgx;mg)f(z; m) dz

{A™T(m)}~! mfl mfl 2124 T0m + i+ )

]
i=0 ;=0 tJ:

D o e A

0<i<my 0<j<m2
where 0; = m;a;/m = va;fv, z; = 0;/A, A= 14+0,4+0y; m,m;,m; =1,2,---;
and 0 < z1, 29 < 1.
The power of F, in the null case is
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PT[(H;)ng] = PT[FQ > (12]
=/ f(zg,z)dzyda
0 frx

— (1t )Ty S 2t

= 3 (mﬂ‘l)zﬂ'(l-z)m, (4)

0<j<ma J

where z = 8,/(1 + ;).

[2]The joint power in the nonnull case with noncentrality parameters A;, ¢ =

1,2.

Pr{(H{ N H3)|H, H3]

:ZAH Z Z (m+ijj_1)<m+jj_1>zizg(1—z1—z2)m¢ (5)
k.1

0<i<m+k 0<j<my+I

and the power of F, in the nonnull case is

PrHEIH;] = S AP Y (m““l)zm—z)m, (6)
!

0<j<ma+! J

where Ay = AVAP . AP = §le=0 /11 k1=0,1,2,---.

The conditional probability that Fy > ay given that [, > a, for positive con-
p g p

stants a; and a;, can be evaluated by

Pr((Hy|H3)|Hy, Hy) = Pr[(HT 0 H3)|Hy, Ho [ Pr(H3)|Hy),  (7)
in the null case and
Pr((H{\H;)|H}, H;] = Pr((H} N H3)|Hy, H;] [ Pri(H3)|Hz),  (8)

in the nonnull case. Define a double sequence in the nonnull case,

o N
= ¥y (M)

0<i<mi+k 0<j<ma+l J

= X [Z (m“fj_l)zi]-(m“‘l)zé,w)

0<j<mat+l [0<i<m;+k J
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for k,1 =0,1,2,---. Since
m+i1+4+7—1 i 1
3 10)
it follows
1 m+]—1)
b - . ]
“—)g)(l—zl)m“ ( ; 2
1 m
= — c, 1 .
(1__21_22) , k1> o0 (11)

Further, the bivariative Poisson distribution is convergent, and we rewrite the
joint power of non-central F’s ratio as

Pri(HiNH)|H, H)=C Z A X by, (12)
k=0 =0
where C' = (1 —z; — z)™ = (1 + 0, + 6,)"™.

For example, consider two way experimental layout with five levels of row
factor and seven levels of column fator. Suppose that the F tests yield Fyo4 =
3.5 and Fga4 = 3.1, which are significant at 0.01 < a < 0.05. For the row
factor, using (4) with v; =4, v =24, m; =2, m = 12, a; = 3.5, 6, = 0.583,
the p-value of the test is Pr[(Hy)|H,] = 0.02183813. For the column factor,
using (4) with v, = 6, v = 24, my, = 3, m = 12, a7 = 3.1, 0, = 0.775, the
p-value of the test is Pr[(Hj)|H,] = 0.02158189. The joint p-value of Hp and
H; is

1 2
Pr{(H{ NH3)|Hy, Hy) = {2.358'2 . 1(12)} ™ D0 T (0.247) (0.329) T(124+i+4)/i 15 !
i=0 j=0

= 0.001965837. (13)

From these the conditional p-value of event H? given event H3 under the null
hypotheses H; and H, is Pr((H{|H;)|Hy, Hy) = 0.09108735. We calculate
the joint and conditional significance level, namely Pr{(H; N H})|H,, Hy) and
Pr((Hy|H3)|Hy, Hy)] , in table [1]. The nominal significance levels of the tests
are 0.05 for both H, and H, in the left column of table [1], and 0.05 for H,
and 0.01 for H, in the right column. The conditional probabilities in the left
column are always larger than those in the right column.

From (5) and (6), we obtain the joint and conditional p-values of noncentral
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F ratios. In the case a; = 3.5,a, = 3, v =12, vy = 6,1, = 10, and A\, = Ay =
6, Pr{(HrNH3)|H;, H3] = 0.06976792, and Pr{(H;|H3)|Hy, H;) = 0.4766672.
We find that the probability of the occurrence of not making a second Type
II error, given that a first Type II error was not made, is larger than the
unconditional probability. We calculate the joint and conditional power of the
test when the nominal significance level is o = 0.05, table [2].

From table [1], figures [1] and [2], we find that the joint probability Pr{(H} N
H})|Hy, Hy) of rejections of dependent F’s is decreasing in the denominator
degree of freedom v, and increasing in the numerator degrees of freedom vy and
v, . When the noncentrality parameter A; increases , the joint and conditional
power increase in table [2] and figure [3]. It seems that two F ratios are more
dependent, if the noncentrality parameter A; hias a larger value. Formulas
(3) and (5) suggest that the analysis of two way experimental designs can be
extended to the problem of dependent of tests having the same error term in
the analysis of variance of multiway experimental designs.

Let the events Hy : F; > a; (i = 1,2) be represented in a 2 x 2 table. The
complement events are Hy and H,. Let the joint probability be denoted by
= = Pr{(H; N H3)|H;, H], and let the marginal probabilities be denoted by
pr = Pr{(H})|H;] and p, = Pr{(H;)|H;].

H; H, Total
Hi T (pr — ) P1 (14)
H |(pp—7) (1—pr—p2+7)|1—p
Total P2 1—p; 1

The dependence between two events is best measured by the odds-ratio

7=7r(1—p1—p2+7r)
(pr—7)(p2—7)

In table [2], figures [4], 5] and [6], we compute and illustrate the odds-ratios.
Figures [4] and [6] suggest that the odds-ratio is an increasing function of 14
and v,, and a decreasing function of v. Figure [5] suggests that the odds-ratio
as a function of the noncentrality parameters A; and A, is not monotone. All
the values are for a = 0.05. The results in the cases a = 0.1 and a = 0.2, not
published in this paper, show similar patterns.

(15)
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3. THE CORRELATION COEFFICIENT

Feingold and Korsog (1986) showed that the dependence between two non-
central F' statistics in the ANOVA table is well represented by the correlation
between the statistics. The correlation between non-central Fy and F, is

2 v—2 143 2)\,' —%
p=H{1+( (Vi)'(f')\j;2 )} , forv>4. (16)

They gave approximations of Pr[Hy|H;], Pr[H}U Hj| and Pr{H;|H,] by lin-

ear or quadratic functions of p.

=1

Lemma 1. The correlation between non-central Fy and F; is increasing in
v; and JA; , and decreasing in v .

Proof. p is clearly decreasing in v. Set
flvi, M) = (v 4+ 2X0) /(v + X)? . (17)

Partial differentiation of log f(v;, A;) with respect to v; and A; are

dlog f(vi, i) —(ri+3)\)
dv; (422 (i + M) <0, (18)
Blog f(l/,', /\,) —2/\,'
= ; 1
8/\,- (I/,' + 2)\,')(1/,' + /\,) <0 ( 9)
Hence f(v;, A;) is a decreasing function of v; and A;. Therefore the correlation
between F and F; is an increasing function of v; and A;. Q.E.D.

To visualize the function, set s; = v;/(v —2), and t;=X/(v—2), (i=
1,2). Then the correlation between non-central Fy, F; is

2 8; + 2¢; -3
ﬂ=H{1+m} =p1°p2, (20)
i=1 i Tl
where .
s;i+2t; 17?2
pi = {1 + __(Si n t,')z} . (21)
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Figure [7] shows the contour of p;, in the correlation coefficient between
two non-central F' ratios, as an increasing function of s; and ¢, .
Some numerical values are shown in table [3]. For example, the correlation
between F|' and Fy statistics is p = 0.3820 by p; - pq, if FY', F7 have a singly
non-central F' distribution with v; = 10, v = 2, v = 10 and nonceatrality
parameter A; = 5, A\, = 2, respectively.

4. REMARKS

This article has established a direct method for calculating the exact value
of joint and conditional probability of F' ratios with the noncentrality param-
eters, the same denominator degree of freedom and even value of the numera-
tors. The results can be more exactly computed joint and conditional power
of noncentral F' ratios anywhere critical region of dependent F' test and are
simpler mathematically than the results from Hurlburt and Spiegel (1976),
Johnson and Herr (1984).

The influence of the parameters v, 1y, v9, A1, and A; is best shown by the
correlation coefficient p in Section 3. However p is just a weak measure of
dependence. In fact Figure 5 shows that the influence of A\ and A, is not
simple.

It is conjectured that the distributions of (£}, F3) in our family is more
dependent if v; and v, increase and v decreases. This result is consistent with
Kimball’s (1951) result. A nice measure of dependence is the odds-ratio.
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Table 1. Pr[(H; N H;)|Hy, Hy) and Pr{(H}|H;)|Hy, Hy] ;null case.

o = 0.05 for Hy and H» a = 0.05 forH; and a = 0.01 for Hj

v vV Tpi(HjnH;) Pr(Hi\H3) | Pr(HinH;)  Pr(HilHj)
2 2 2 026 513 .008 .840
4 .016 317 .006 .h51
10 .008 .156 .002 .243
30 .004 .082 .001 104
120 .003 .058 .001 062
10 10 011 .225 .003 345
30 .005 110 .001 144
120 .003 .064 .001 071
30 30 .007 133 .002 179
120 .004 072 .001 082
120 120 .004 .085 .001 .099
4 4 4 .022 437 .007 739
5 .019 376 .006 .644
10 .011 226 004 370
16 .008 159 .003 .243
30 .005 .106 .001 144
120 .003 .063 .001 .070
10 10 .014 281 .005 452
15 011 210 .003 324
30 .007 131 002 181
40 .005 .110 .001 145
120 .003 .069 .001 .078
30 30 .008 164 .002 232
120 .004 .080 .001 .094
120 120 .005 .098 .001 119
10 10 10 .018 .362 .006 .606
15 .014 ] 275 .004 .449
30 .008 .168 ©.002 .250
100 .004 .084 .001 102
120 .004 .078 .001 .093
30 30 .011 222 .003 .336
120 .005 .095 .001 117
120 120 .006 123 .002 .160
30 30 30 .015 .309 .005 .500
90 007 .148 .002 207
120 .006 123 .002 .165
120 120 .009 175 .003 .247
120 120 120 .014 .275 .004 427
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Table 2. Power Pr[(H;)|H;], simultaneous power Pr{(H; N H3)|H;, H3],

conditional power Pr((Hy|H;)|Hs, H}] , and odds-ratio of Hy, H; ( O.R.) for

a = 0.05, nonnull case.

121

A; = 0.50; A = v
"1 v2 v Pr(H}) Pr(H{ nH3) Pr(H'|H}) O.R Pr(H3) Pr(HInH3) Pr(H}|H}) OR.
2 2 2 073 .039 .536 30.161 .096 .055 568 27.267
4 .080 .033 364 8.486 .133 .055 416 7.288
5 .096 031 .321 6.105 .145 .055 .380 5.237
10 111 .025 .229 2.809 178 .054 304 2.476
30 .124 .021 165 1.471 .208 .052 .252 1.384
120 .131 018 141 1.107 221 .051 .232 1.087
10 10 .145 .040 279 4.335 .268 .090 .335 3.699
30 205 .038 .183 1.83% 413 .107 .259 1.684
120 .249 .036 .145 1.185 .505 118 .233 1.154
30 30 287 0565 .191 2.176 602 .152 .252 2.059
120 .430 .063 .146 1.274 .818 187 .228 1.275
120 120 722 .103 .142 1.486 .989 219 .222 1.797
4 4 4 .094 .045 484 16.649 142 .076 537 14.012
5 .101 044 .436 11.340 .159 .079 498 3.449
10 .125 .040 .319 4.338 .215 .088 412 3.660
16 .139 037 .268 2.733 .246 .093 377 2.377
30 152 .034 .224 1.793 277 .097 .350 1.631
120 .168 .031 .185 1.173 .308 .101 .328 1.138
10 10 .145 .052 357 5897 .268 .116 .432 4.884
15 .169 .051 301 3.724 .326 2128 .392 3.165
30 .205 .049 .239 2.115 413 .146 .353 1.898
40 .218 049 .223 1.793 .440 .151 .344 1.642
120 .249 047 .189 1.237 .505 .165 327 1.194
30 30 .287 072 .250 2.627 .602 .207 .343 2.438
120 .430 .082 .190 1.355 .818 .261 .320 1.352
120 120 .22 133 .184 1.648 .989 .306 .310 2.071
10 10 10 .145 .068 .469 8.938 .268 .153 572 7.190
15 169 .070 414 5.227 .326 179 .548 4.315
30 .205 072 .348 2.633 413 .219 .531 2.314
100 245 072 .294 1.399 .498 .266 .534 1.334
120 249 072 .290 1.327 .505 .270 535 1.275
30 30 .287 .105% 367 3.536 .602 312 519 3.201
120 .430 126 .292 1.500 .818 .428 .523 1.504
120 120 722 .203 .280 1.957 .989 502 507 2.637
30 30 30 287 157 .546 5.37% .602 452 .750 4.914
80 407 .209 512 2.091 .791 .651 .822 2.229
120 430 219 511 1.787 .818 .685 838 1.929
120 120 722 .354 .491 2.598 .989 812 .821 4.295
120 120 120 722 586 .812 4.491 .989 .980 .991 16.254
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Figure 1. Probability of simultaneous rejection of F's as a function of v,
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Figure 2. Probability of simultaneous rejection of F's as a function of
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Figure 7. p; in the correlation between two non-central F' ratios with
S = l/i/(ll - 2), ti = )\,'/(V - 2)
Table 3. p; for known v;, v the degrees of freedom of numerator and
denominator and noncentrality parameter ;.
5 10 30 120
vi W A; =0 A; = 5ug A= v A =0 A; = 5 At = vy A =0 A; = Suy At = v A = A; = 5up At = v
1 .500 522 .555 .333 351 .378 186 197 .213 .092 097 .106
2 .632 855 .886 447 4869 .500 .258 273 .295 .129 137 .149
5 791 808 .830 .620 643 674 .389 .409 .439 .202 213 .231
10 877 .889 .904 745 764 .791 .513 .535 .568 .280 .295 .319
30 .953 .958 964 .B89 899 913 .719 .739 767 .450 472 .503
120 .988 989 .991 .968 972 .976 .900 910 .923 .710 .730 .759




