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A Sharp Result of Random Upper Functions
for Levy Processes
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ABSTRACT

In this paper, we show that the result of random upper functions for
Levy processes obtained by Joo(1993) can be sharpened-under some ad-
ditional assumption. This is the continuous analogue of result obtained
by Griffin and Kuelbs(1989) for sums of i.i.d. random variables.

1. INTRODUCTION

Let {X(?) : t > 0} be a real-valued stochastic process with stationary in-
dependent increments whose characteristic function is given by

BeapliuX (1)} = ezp{tg(u)}
14 x2

where

g(u) = 2bu + /(ei“” —1- )dv(z)
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and v is a Levy measure on R — {0} satisfying
/($2 Al)dv(z) < oo.

We first note that a Gaussian component is excluded. And as usual, we
assume that X(0) = 0 and that we are dealing with a version which has
almost all sample functions right continuous and having left limits. For > 0,
we define

G(z) = /|| du(y)

K(z) = x'2/ y? dv(y) (1.1)

lyi<x

Q(z) = G(z)+ K(z).

It is well-known that Q is positive, continuous, decreasing and zero at infinity.
Also, it is obvious that

22Q(z) is nondecreasing. (1.2)

The above functions G, K and Q play an important role in studying the sample
functions of X (t) including limit theorems. Upper functions for Levy process
X(t) as a generalization of the law of the iterated logarithm was established
by Fristedt(1971), Joo(1993), Kim and Wee(1991) and the others. In particu-
lar, Joo(1993) showed that if limsup,_, G(z)/K(z) < oo, then there exist an
appropriate subordinator T(t) and ordinary function a(t) such that for some
positive finite constant C,

; X(t) - at)
TSP T (1) log [log £]) /2

Similar conclusion holds if £ — 0 and t — 0 are replaced by + — oo and
¢t — oo, respectively. This result is the continuous analogue of result obtained
by Griffin and Kuelbs (1989) for sums of i.i.d. random variables.

In this paper, we show that the above result obtained by Joo(1993) can be
sharpened if limsup G(z)/K(z) < 1. Section 2 consists of the basic facts and
some lemmas. In section 3, we prove the main result. We deal mainly with the
behavior for small ¢ since the case of large ¢ follows from similar arguments.
Throughout this paper, the following notation will be used frequently;

=C a.s. .
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(1) As 2 — 0 and = — oo, f(z) ~ g{z) iff f(x)/g(z) — 1.
(2) Lat = log |log t|.

2. PRELIMINARIES

In this section, we give the basic facts and some lemmas which will be used
in proving the main result. We start with the useful properties of Q as follows.

Lemma 2.1. (1) If hmsup G( )/I&( ) < 8 < oo, then z(+9)Q(x) is

strictly decreasing for z sufﬁaently small, and
/ |z|® dv(z) = oo
lzl<1
for each € < 2/(1 + 6).

(2) If limsup G(z)/K(z) < 6 < oo, then 2(1+9Q(z) is strictly decreasing for

z sufficiently large, and
/II |z|* dv(z) < o0 for each ¢ < 2/(1 +6).
z|>1

Proof. First we note that for 0 < A <2and 0 < a < b,

A /ab *71G(z) dx = /a<|z|<b lz|* dv(z) + b*G(b) — ¢*G(a), (2.1)

and

b
(2 - /\)/a 1K () dx = /ng) 2] dv(z) + a* K (a) — B K (B).  (2.2)
Hence,

b*Q(b) — a*Q(a) = /ab 2 HYAG(z) — (2 - MK (z)} de.

Thus, the first parts follow immediately.
Now, the second parts are consequenses of the first parts since by (2.1) and(2.2)

1
/ *1Q(z) dr < 00 = " lz]* dv(z) < 0o
0 z|<1
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and -
/ e 1Q(x)dr < 00 & o ||} dv(z) < 0. D
1 x|>1

If limsup G(z)/K(z) < 6 < oo , then by lemma 2.1, for z sufficienly small
or large,
zP?Q(z) is strictly decreasing, (2.3)

where p = 2/(1 + ) is used throughout this paper.
If we define, for A > 0,

Qa(t)) = 1/t
bh(t) = a(At/Lst), (2.4)
Bi(t) = BY(t)Lat,

then by(t) and B\(¢) increase for small or large ¢.

Lemma 2.2. If limsup G(z)/K(z) < 6 < oo, then for y < = and all =

r—0
sufficiently small,

(y/2)"" < a(y)/a(z) < 1. (2.5)
Proof. See lemma 2.3 of Joo(1993). O

We now introduce a process T'(t) as follows;

T(t) = lim 3 {X(s) = X(sT)}I{|X(s) = X(s7)| > ¢}, (2:6)

where I( A) denotes the indicator function of A.
It follows immediately that T'(¢) is an increasing Levy process whose charac-
teristic function is given by

Eexp{iuT(t)} = emp{t/(e“‘x ~ 1) du(z)}, (2.7)

where g is a Borel measure on (0,00) defined by u(E) = v(EY?) + v(—E'/?)
admitting the notation EV? = {z'/?: z € E}.
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Lemma 2.3. Suppose that (2.3) holds as z — 0, and for A > 0, let
n(A) = 27INV2 N2 4 9p1/2, (2.8)
If Ao is sufficiently small such that n(As) < (1 + 8)71, then for all A > X,

ing T
RN

where k(X Ao) = {(1 4+ 8)71 — n(Xo)}( Ao/ AP N5

> &(), do) > 0, . (2.9)

Proof. See lemma 2.6. of Joo(1993). O
Lemma 2.4. If t; = exp(—k7) with ¢ > 1, then
kllm T(tk_H)/T(tk) =0. as. .

Proof. See lemma 4.6. of Joo(1993). O

3. MAIN RESULT

In this section, we assume that
limsup G(z)/K(z) <0 <1 (3.1)
asx —0Dorxr— oo.

It follows immediately from (1.2) and (2.3) that if (3.1) holds, for z suffi-
ciently small or large,

£7°Q(2) S Q(€2) < €7Q(x)  if £>1, (3.2)

where p = 2/(1 + 8) € (1,2). Also, it is a consequence of lemma 2.1 that the
condition (3.1) as # — oo implies

/ |z| dv(z) < oo
jz|>1
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which is equivalent to F|X ()| < oco.
In this case, if we define, for z > 0,

H@) = [ lyldu(y),

lyl>= :

then (2.2) with A =1 shows

/:o K(y)dy = zK(z) + e H(x). (3.3)
On the other hand, the condition (3.1) as z — 0 implies

JL o leldvta) = oo,
and by (2.3),

zQ(z) — o0 ~ as x— 0,
which means

t7'a(t) =00 as t —0.
Thus, (2.9) implies that

t/(T(H)Lt)'? -0 as t — 0. (3.4)

Now we decompose X(t) as follows; for k = 1,2, let

Eezp{iuXi(t;a)} = exp{tgr(v)},
where g1(u) = [ 1<, (6™ — 1 —tuz) dv(z) and g2(u) = [i,|5, (€™ = 1) dv(z).
Then X(t) = X(t: a) + X3(t:a) +tM(a),
where M(a) = b+ [, <o @*/(1 + 2*) dv(z) = [lp50 2/(1 + 2%) dv(z).

Since X;3(t: a) =0 a.s. for t sufficiently small and (3.4) holds, we may assume
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that X(¢) = X;(¢ : a) in order to obtain the result that limsup,_, X(t) /

(T(t)Lat)'/? is a.s. positive finite constant. Hence whenever we consider the
behavior for small ¢, we restrict ourselves to the case where G(1) = 0,G(z) <
OK(z) for x <1 and X(¢) = Xy(t,1).

On the other hand, whenever we deal with the behavior for large t, we assume
that EX(1) = 0.

In each setting, we have

/ |z|dv(z) < oo,
|z|>1

and
Eexp{iuX(t)} = ezp{t / (€™ — 1 — juz) du()).
Lemma 3.1. (a) If G(2)/K(z) <8 < 1forall 2 < 1 and G(1) = 0, then
H(z) < Q(z)(2+0-p)/((p—1)(1+0)) forallz <1 .
(b) Similar statement for large z holds
Proof. By (2.3), for z <1,
| KWy <27Q(@) [~ yrdy = 2Q(2)/(p — 1),
Thus we obtain that by (3.4), for z < 1,

H(z) = x-lff K(y)dy — K ()

Qe)/(p—1) - Q(z)/(1 +0)
Qz)(2+0-p)/(p-1)(1+06). O

Lemma 3.2. If (3.1) holds, then {T'(t)/a®(t)} is tight for ¢ sufficiently
small or large.

TV

Proof. For £ > 0, let {T'(¢)} be a process whose characteristic function is
given by

Beap{iuT(t)} = exp{t [oggaaniy (€ — 1) diu(a)}.
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Then
P{T(t) > Na¥(t)} < P{T(t) 2 Na*(t)} + 1 — exp{—tG,(€%a*(1))}
< ET(t)/Nd*(t) + tG,(E%a%(1))
— 1K (a(t)/N + LG(Ea(t))
< HE/N +1)Q(Ea(t)

where G, is given as in (1.1) by replacing v with .
It follows from (3.2) that for £ > 1 and for ¢ small or large

Q(éa(t)) < €77Q(a(t)) = €777

P{T(t) > Nd®(t)} < €PN + &P

Hence

Thus given ¢ > 0, choose ¢ large enough that {7 < ¢/2 and then N large

enough that ¢2?/N < ¢/2. For this choice of N and for ¢ small or large,
P{T(t) > Na*(t)} <e,

which proves the lemma. O

Lemma 3.3. (a) If limsup,_, G(z)/K(z) < 1, then there exists Co > 0
such that for all ¢ sufficiently small,

P{X(t) > a(t)} = Co . (3.5)
(b) Similar statement for large ¢ holds if EX(1) = 0.
Proof. See Theorem 4.6 of Wee(1988). O

Lemma 3.4. (a) If limsup,_, G(z)/K(z) < 1, then for 6§ > 0 sufficiently
small and ¢ small,

P{X(t) > 6(T(t)Ls1)'/*} > exp(—27" Lat). (3.6)

(b) If llmsup G(z)/K(z) < 6 and EX(1) = O,then for § > 0 sufficiently

small and n large integer,
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P{X(n) > 6(T(n)Lyn)"?} > exp(—2"'Lyn).

Proof. Let £ = 4log(2/Cy) where Cq > 0 is such that (3.5) holds. Let
p(t) = [Lat/€] + 1, 7(t) = £t/ Lat and k(t) = (p(t) — 1)7(t), where [ ] is the
greatest integer function.

Then p(t) ~ Lyt/€ and k(t) < t.
Now we define for i = 1,2,- -, p(t),

Vi=.

(a7(2)) = X((z = )7(2)), (3.7)
W; ¢

T(ir(t)) — T((s — 1)7(2)).
If we write b(t) for a(t/Lst) then for small ¢,
P{X(t) 2 §(T(t)Ls1)'/*}

> P{X(t) > §(T(8)Lat)"/%, Wi < Nb*(2),1 < i < p(t)}
> P{X(t) > 8(p(t)Nb*(t)Lot)"/?, Wi < NB*(1),1 < i < p(1)} (3.8)
> P{Vi 2 6(2N€)"/2b(t), Wi < Nb*(2),1 < i < p(t), X (2) — X(k(t)) > 0, Wy < N (1)}
= [P{V1 > 8(2N€)'/7b(t), W1 < NB*()}]FO 7 PLX(2) — X(k(1)) 2 0, Wy < NB* (1)}
Now, we apply (2.5) and Lemma 3.2 to choose N large enough so that

P{W, < Nb*(t)} = P{T(£t/Lyt) < NB*(t)} > 1—Co/2.  (3.9)
For this choice of N we take § = (2N¢)~'/2. Then by (3.5),

P{Vy > §(2N¢)'?8(t)} > P{X(r(t)) 2 a(r(t)} 2 Co  (3.10)
for all small ¢ since £ > 1.

Furthermore, P{X(t) — X (k(t)) = 0, Wysy < Nb*(t)} > Co/2 for all small ¢.
Thus for ¢ sufficiently small, (3.8),(3.9) and (3.10) combine to yield

P{X(t) > 6(T(t)Lt)V/?} > (Co/2)"®
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exp(—Ep(t)/4)
> exp(—271L,t).

The proof for (b) run in a similar way except that,in (3.9), we choose N large
enough so that

P{W; < N (1)} > max(1 — Co/2,1 — C1/2), (3.9")
where C is a positive constant satisfying

inf P{X(n) 2 0} > C\.
The reason for which we consider only integer is that for large #

P{X(1) - X(k(t)) > 0} > Cy
does not hold in general. O

Theorem 3.5. (a) If limsup,_, G(2)/K(z) < § < 1, then for some posi-
tive finite constant C,

lim sup X() =C a.s..

2P T L)
(b) Similar statement for large ¢ holds if EX(1) = 0.

Proof. We give the proof for t — 0. Recalling first that we assume
G(1) =0 and

Eexp{iuX(t)} = e:zrp{t/(e““” -1 —fuz)dv(z)},
we have

M(a) = —/ z dv(z).

|=|>a

Now (2.9) and Lemma 3.1 imply

. | M (br(8))] ) thy(t)H(br(2))
NP LR S NP R A B 1) Lt
24+60—-p

INA

(p— 1)(1 + 0)A&/2(X, X))
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Combining this estimate and Theorem 1 of [6], it follows that C is a finite
constant.
Now to prove that C is positive, let ¢, = ezp(—k?) with 1 < ¢ < 2 and write

X(te) = X(t) — X (1) + X (tey1)- (3.11)
By the argument above and Lemma 2.4, we obtain

i sup X es)

o T Loty & (3.12)

Furthermore, if § > 0 is as in Lemma 3.4, and

Ep = {X(ts) — X(ti41) > 8[(T(t) = T(tks)) Lot — tis)]'/?}
then for all large k.

P(E) > (k+1)"Y2 (3.13)

Since the events {E)} are independent and 1 < ¢ < 2, (3.13) and the Borel-
Cantelli lemma imply

. X(t) ~ X(tgs1)
WU T (60) = T(tee)) Lalts — G2 = ° &

which,together with (3.11),(3.12) and Lemma 2.4, yields the desired result.
The proof of (b) can be proceeded in a similar way except we consider nj =
[exp(k?)] with 1 < ¢ < 2 to prove the lower bound. O

Corollary 3.6. (a) If X(t) is a stable process of exponent a € (1,2), then
T(t) is a stable subordinator of exponent /2 and

limsup X(®)

P T - ¢ O

for some positive constant C.
(b) Similar conclusion holds for large ¢ if we consider the process X (t) — E X (t).
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