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A Note on the Asymptotic Distributions of Dimensionality
Estimators in Discriminant Analysis
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Abstract

The purpose of this paper is to simplify and study the asymptotic distribution of
the dimensionality estimators in discriminant analysis based on Akaike’s and
Mallows’ methods for samples from a multivariate distribution with finite fourth
moments.

1. Introduction

In multiple discriminant analysis the number of discriminant functions useful for
discrimina-ting among several groups is called the dimensionality. The purpose of this
paper is to simplify and study the asymptotic  distribution  of the dimensionality
estimators based on Akaike’s and Mallows’ methods for samples from a multivariate
distribution with finite fourth moments. We also investigate via simulation studies how robust
the asymptotic distribution of the dimensionality estimator is to the departure from
normality.

Let yi,-- Vig (i=1,...,p0) be iid. mXx1 absolutely continuous random vectors with mean

W;, covariance matrix 2 and finite fourth moments. Suppose that the samples are independent
across populations. Let ;; be the sample mean of the gq: observations in the i the sample

(i=1,..,p) and y be the sample mean of all n observations, (n = 3%.1¢q:). Then matrices

A and B are defined as
—_ —_ -— —_ di _ . ,
A=gq;'( yi-y)(yi-y) and B=§;J;(y.~j— yi )y = yi)
The matrix Q@ is defined as 2=37'T%1qi (- 1) (w - n) where u= _,ll_zleqiui.

. -1 .
From now on, we will assume that p2m+1 so that AB has m nonzero eigenvalues

A > w. > fn> 0. In particular, if yu,- Yia are independent Nm(ii,2) random vectors
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(i=1,...,p), then we have that the distributions of A and B are

A~Wm(p-1,2,9) and B"'Wm(n_p,z).

Q is called the noncentrality matrix.

For the asymptotic theory there is no loss of generality in assuming that Q is the
diagonal matrix defined by @=diag { wy,-,wm}, @=nMb, and Z2=1In where nz=n-p and
8 is the fixed matrix defined by 8=diag { 81,...,.0, } . This means that we consider the case
where A,B,Q, and 2 are already transformed to canonical form. Thus the dimensionality is,
in fact, the rank of @. We can regard this estimation problem as one of deciding which of
the m hypotheses is true:

Hi:Bke1= ... =6, =008 >0), k=01,....m - L.

The likelihood ratio test statistic for Hk is given by

m
Tk = nzijkzillog(l + f)

where fi > ... > fm > Oare the eigenvalues of AB™!. The asymptotic distribution of T« is
2 im-tomio when He is true.

We need an asymptotic expansion of f for the purpose of deriving the asymptotic
expansion of test statistic T«k. Suppose 0; is simple. Then, using the result for perturbation
expansion given in Problem 463 in Siotani et al(1985),pg. 18, we can obtain the
asymptotic expansion of f given by

1 1
fi=8i+ ' (Ei(n) -8:Uu(n)) + v [-(Ei(n) - 8;Ui(n))

3

* ?’: eil_ej [ Ealn) - 8,;Ui(n) } 2+ Fa(m)] + Oplnz %), D

where Eif{n), Fi{n),and U{n) are the ij” element of matrices E(n), F(n), and U(n)

defined as follows:

_ 1 ey
E(n) = qu,u S VP TR VR T i VS VO |

F(n) = gq;'( Ti-€ ) gi-¢ ),
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| TP Ty -
Uln) = m’ l=l§[(su €; )(su 81) Im],

1

where yi =W+ €, y=U+§E §E; = izﬁﬁ i and €= %Zzpzqu‘ £
We can rewrite -- A and LB as

D S 1 1 D 1
= A=8+ V-EE(n)+ s F(n), P B=1In+ n‘U(n). (2)

For our purpose we derive an asymptotic expansion for T« in the following way using the

idea given in Muirhead and Waternaux (1980). The test criterion 7« is rewritten as

k
Tk=n2[1og|1+AB'1|— ;10g<1+ﬁ)]. (3)

Substituting (1) and (2) into the expression (3) for Tx we can show, after straightforward

but lengthy algebraic manipulation, that T has the following expansion:

L
2

Ti=nz 2, log(1+8)+ Yn:C+D+ 0y nz %),

where
_ & _Eqi(n)-68:Ua(n)
C= i 1+86; ’
m . k m L 2
D= Z Fu(n) _ Z Z Eu(n)

it (1 +6)) 5 (1 +8,)(8,-8)

k & 40,F ;(n) U in) L E & E{n)Ui{n)
* ??:1;'22101 (1 +8,)(1+6,)(6,-6) izloljjzml (1 +8,X1+8)

ko 8,0, -20;- 8;%) Uiln)? moom B840, +2) Uiin)?
* zz=:1j:2k+1 (1 +6,)(1+9,8;, -8 +i=zlmj=zim 2(1 +6;,)(1 +6)

e & E i{n)?®
i jg:q 2(1 +8)(1+86))




Dimensionality in Discriminant Analysis 323

2. Akaike’s and Mallows’ Methods

Applying Akaike’s and Mallows’ methods under normal sampling, Fujikoshi and
Veitch(1979) worked on estimating the dimensionality in the MANOVA model that is applied
directly to discriminant analysis. Akaike’s criterion for discriminant analysis is equivalent to

choosing k to minimize

Ac=n ;:'leogu s F) - 2m - k) n - k),

where Am=0 and ni=p-1. And Mallows’ criterion is equivalent to choosing k to
minimize

Ck = n2 f: fi-2(m - k)Xn1 - k),

i=k+1

where Cm =0 and nz2=n- p.

Let K be the dimensionality, the number of nonzero population eigenvalues. Hence our
estimate of the dimensionality based on Akaike’s and Mallows’ methods are defined by

Ka=k when Ax= min(Ag, ,Am)

—

Kec=k when Ck= min(Cy,-...,Cm).

Backhouse and McKay(1982) evaluated the performance of various methods for
estimatingthe dimensionality in discriminant analysis under normal sampling. And
Fujikoshi(1985) studied the statistical properties of these methods under normal sampling. In
particular, he derived the asymptotic distribution of the dimensionality estimators based on
these two methods for the MANOVA model. In this section we derive the asymptotic
distribution of the dimensionality estimators which are much simpler than the asymptotic
distribution given by Fujikoshi(1985). In addition, this asymptotic distribution is obtained for
samples from a multivariate distribution with finite fourth moments.

First we consider the asymptotic distribution of K4 when K =kolieB; > -

> Bk > Bkp1 =+ =0, =0). Using the fact that f converges to 8,(1 < i < m) in
probability, we have that
ko
L ac—7 10g I (1 + 00, (0 < k < ko),
1

""TAI( -7, (ko £ kK < m).



324 Changha Hwang, Daehak Kim

This implies that

lim P ( Ka=k =0, (0 < k < ko), (4)
lim P ( Ka=k) = lim P (Ax < As, 5 = ko,em), (ko £ k < m), (5)
provided that the limit exists.
We rewrite
Ag = nisz—zon - k)(ny - k), (6)
where

Tk = n2log ﬁ (1 + f).

i=k+1

We recall the following expansion for T :

m _ L
Ti=nz 2, log(l+8)+ Yn:C+D+ 0y n2 %)
When K = k, the expansion for Tk reduces to
3 k1 2 ‘%‘
Tk = l,g;l[Fﬁ(n) - ]Z;‘E Ei(n)®1+ O0p( nz °).

Thus when K = k, Ak reduces to

1

m k Ty
Ak = —r—lnz— i§+1[Fii(n) - JZ-;—GIT Eim)? - 20m - k)Xni-k) +O0pnz ?).

We can show easily the followings. For details see Hwang(1994),

[ e S 1o 2o 1 2] L
[ D Fam - 35 Bom 1+ 21 5 G-Eim)®] > ush),

i=k+1 j=s+1

S s

k m
—n'lz.[ 2 [Fuln) - Z_gl" Einmi+ > 2 _817 E iin) 2] -t 1.k, s).

i=k+1 J=1 Uj i=s+1 j=k+1

Furthermore, the joint distributions as s varies also converge. Substituting (6) into (4) and
(5), we obtain the following theorem.

Theorem 1 Let f (i =1,..m) be the eigenvalues of AB ™' obtained based on samples

drawn from a multivariate distribution with finite fourth moments and suppose that K = ko .
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Then
lim P ( Ka=k) =Pk | ko),

where

0, 0L k< ko
Pk lko) = { P(x1(s, k) > 2msk, s=ko, -, k-1)
« P(x2(k,s) £ 2muis, s=k+1,~ , m), kosSk<m

If we take ko = m - 2, then the asymptotic probability of overestimating the dimensionality
by one is
Pim-11m=-2) =Ptinmp > 2ni -m+3) P Xin-mp < 2011 =m+ 1)),

We obtain from Theorem 1 that the asymptotic probability of correctly assessing the
dimensionality reduces to
P(kolko)=P(x2ko,s) £ 2Mmues, S=ko+1, =, m).

For some special cases P (ko | ko) can be simplied. For the case when ko = m - 1 we have
Pm-11m-1)=P Xin-mp < 2(ny -m+ 1)),
We now consider the asymptotic distribution of K. when K = ko. Since f converges to

8; (1 £ i £ m) in probability, we have that

Lo - S, (0 < k < ko),
n i=k+1
%ck —P (ko < k < m).
This implies that
}liinmP(fc=k)=O, (0 € k < ko),

imP ( Kc=k) =P(Cc < Cs s=kowm), (ko <k < m)

provided that the limits exist. We write
Ce= Tk -2(m -k)ni-k),

where
_L
2

) - Zk;f]

Then, using the same arguments as before, we obtain the following expansion:

Tx = n2 ,'g;lfi = nz[ tr (AB
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m - -~ 1L
Ck=n2i§19,'+\/726+ D +0u(n2?),

where
C: 1-2:* (Eu(n) eiUii(n)),
m kK m F n)z
= - — TR
D= 2 Fitn) - 2 2 758,

k m . m m
- ;z:l 2. T.Z_gle—j'Eij(n)Uij(N) - 2. 2 Ei{mUin)

= 50 ST ET
v B Seuami- 3 5 2 e
2= v 1 j=k+1 9, - 6 Y

When the null hypothesis Hx is true the expansion for Cx reduces to

m k _ 1
= }E [Fi(n) - Z‘i—LEu(n) 1-2(m -k)ny -k)+ Oplnz ?).
i=k+1 =

Recall that for

Ac= o= 20 [Filn) - g 5= Eitn) "1 - 2m = k)(m = k) + Opln 2

Thus we see for any multivariate distribution the asymptotic distribution of the dimensionality
estimators based on the two methods are same.

3. Monte Carlo Studies

First we study the performance of Akaike's method and Mallows’ method in estimating the
dimensionality for normal sampling.  The Monte Carlo study consisted of generating 500
values of a noncentral Wishart matrix A and a central Wishart matrix B.

Second we study the sampling distributions of the dimensionalities estimated by Akaike's
method and Mallows' method for sampling from an elliptical t-distribution on 5 degrees of
freedom. Sampling distributions using the normal based criterion Ak and Mallows’ criterion

Sk were obtained. The study consisted of generating 500 samples of size n = 56, 106, 206

of an 4-variate elliptical t-distribution on 5 degrees of freedom for 6 populations with

parameters  W;i(i = 1,..,6) and V = ( ) ls. These samples can be generated using the
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following relationship :
_ L
yicm+Z 2 (4V)x,

where x ~ N4(0,In) and Zis 12

Generation of the samples, computation of the sample eigenvalue and the analysis were
conducted using SAS/BASICS and SAS/IML. Table 1 presents the results or the probability
of the estimate taking value 3 when the true dimensionality is 2 using Akaike’s and Mallows'
methods. From the asymptotic theory we have

limP( Ra=3)= limP( Kc=3)=P@B12=PX3<4) P(xi> 8 ~007%2.

The percentages given in Table 1 tend to increase as either the sample sizen or 8 min

increases. The percentages are usually larger than the percentage 7.92 obtained from the
asymptotic theory when 8 min is appreciable. Table 2 and 3 present the results for Akaike's

( Ax) and Mallows’' (Cx) methods in terms of the percentage of correct decisions for normal

distribution and for elliptical ¢(5) distribution, respectively.
As seen from Table 1, 2, and 3, the percentages for the two methods are very close,
especially for large sample size (n= 206 or nz= 200), supporting the result that the

asymptotic distribution of Ka and Kc are the same. These criteria perform best for large
values of 8 min. When K = ko=m -1=3 we have

limP ( Ra=3) = lmP( Kc=3=P(313)=P(is 4 =~0865

We also have P(4 |1 4)=1.
The Monte Carlo results for K=3 and K=4 agree quite well with the asymptotic
theory when n and 8 m, are large. Although the asymptotic distribution depends on ko, m

and ni, the speed of convergence depends highly on the values of the population eigenvalues,

especially the value of 0 mi.

Overall the two criteria under normal and elliptical t(5) sampling have almost the same
behaviours when n and 8 mn are large. Our simulation study agrees quite well with theory.

As expected the population eigenvalues have the greatest effect on the speed of convergence.
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Table 1 : The Percentage of Overestimation by one when K=m -2 =2, under normal

sampling (m = 4,p = 6)

AKAIKE MALLOWS
8, P 83 84 | n2=50n2=100n2 = 200 nz =50nz = 100n2 = 200
0.1 0.08 0 0 2.0 2.8 94 26 40 94
04 0.2 0 0 6.8 12.0 134 88 14.0 14.2
0.8 04 0 0 10.6 144 15.0 14.2 16.8 158
2. 08 0 0 | 128 16.0 15.6 16.6 18.2 16.0
6 2 0 0 14.0 16.4 154 17.0 184 16.0

Table 2 : The Percentage of Correct Decision, under normal sampling (m = 4p = 6)

AKAIKE MALLOWS

81 D) 83 8s | K |n2=50nz=100n2 = 200 nz = 950nz = 100 n2 = 200
04 02 0.1 0 3 246 670 83.2 298 672 834
1. 08 04 0 3 8.8 8.6 83.2 88 864 83.2

1 0.8 0 3 B8 &2 83.0 842 850 82.8
6 4 2. 0 3 862 8.4 834 846 8.0 82.8
04 02 01 0.08| 4 184 588 92.8 202 600 93.0
08 06 04 02 | 4 826 90 100 846 990 100
4, 2 1 08 {4 100 100 100 100 100 100
6. 4 3 1 4 100 100 100 100 100 100

Table 3 : The Percentage of Correct Decision, for elliptical t(5), (m = 4p = 6)

AKAIKE MALLOWS

8, 82 83 84 | K |nz=50n2=100n2 = 200 nz = 50nz = 100 n2 = 200
04 0.2 0.1 0 3 6.0 6.8 14.2 9.2 8.8 154
1. 0.8 04 0 3 39.6 69.0 85.4 434 71.0 854

1 0.8 0 3 73.2 83.2 83.6 74.0 834 834
6 4 2. 0 3 81.0 83.8 834 80.6 83.0 83.0
0.4 0.2 0.1 008 4 56 13.6 15.2 6.8 144 15.8
0.8 0.6 04 02 | 4 13.2 17.0 15.8 14.0 174 16.2
4, 2 1 08 | 4 65.4 86.6 99.4 67.2 87.2 994
6. 4 3 1 4 98.0 100 100 08.2 100 100




