Abstract
Many measures to detect multicollinearity in linear regression have been proposed in statistics and numerical analysis literature. Among them, condition number and variance inflation factor(VIF) are most popular. In this study, we give new interpretations of condition number and VIF in linear regression, using geometry on the explanatory space. In the same line, we derive natural measures of condition number and VIF for logistic regression. These computer intensive measures can be easily extended to evaluate multicollinearity in generalized linear models.