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Constant Error Variance Assumption
in Random Effects Linear Model”

Chul Hwan Ahn’

Abstract

When heteroscedasticity occurs in random effects linear model, the error variance
may depend on the values of one or more of the explanatory variables or on other
relevant quantities such as time or spatial ordering. In this paper we derive a score
test as a diagnostic tool for detecting non-constant error variance in random effects
linear model based on the model expansion on error variance. This score test is
compared to loglikelihood ratio test.

1. Introduction

Diagnostics in general are used to decide if assumptions made in fitting a model are
appropriate. Box(1980) suggests that these methods should be done conditionally given the
fitted model, so any principles to be developed for them are likely to be the same for both a
Bayesian and a frequentist. How do we check the appropriateness of the assumption given the
fitted model? Several diagnostic tools have been developed for this purpose. In linear
regression Cook and Weisberg(1983) proposed a diagnostic test for examining the assumption
of nonconstant variance. Their idea is to convert the constant variance assumption to a
testable parametric hypothesis. In one way random effects model Dempster and Ryan(1985)
proposed weighted normal plots as graphical checks on the normality of random effects. Their
weighted normal plots involve a modification that gives the i-th observation a sample
dependent weight. They showed that weighted normal plots are more sensitive than
unweighted plots to several departures from the assumed distribution on the random effects.
In mixed model analysis of variance Cook, Beckman and Nachtsheim(1987) applied the idea of
local influence (Cook, 1986) to assessing the effects of perturbation from the usual assumption
of constant error variance and from the assumption that each realization of a given random
factor has been drawn from the same normal population. In the area of generalized linear
model, Smyth(1989) considered the case for which the dispersion submodel is a gamma
generalized linear model with log-link. The score test statistic in his paper is essentially of

1) Department of Applied Statistics, Sejong University, Seoul 133-747, KOREA.
2) This paper was supported in part by NON DIRECTED RESEARCH FUND, Korea Research
Foundation, 1993.



Constant Error Variance 297

.

the same form as the one in this study - half the sum of squares due to linear regression
from the constructed model.

In this study we consider methods for examining the assumption of homoscedasticity in a
special case of the random effects linear model, given by

Yi = XiB + Ai + ¢ (1)
A;i is NID(0, 0%), &; is NID(0, 6%), and A’s and &’s are independen

We now question the assumption on constant error variance. When heteroscedasticity occurs
the error variance may depend on the values of one or more of the explanatory variables or
on other relevant quantities such as time or spatial ordering. There will be several methods to
seek diagnostics concerning heteroscedasticity but a standard method of deriving diagnostics
will be through the technique of model expansion, in which a model
like (1) is embedded in a large class and a relatively simple procedure like a score test (Chen,
1983) is then used to turn a test into a diagnostic. For model (1), useful expansion can be
obtained by setting

var(ey)=0%exp(AT Z1) (2)
where ) is an unknown parameter vector and Z; is the value of a vector of covariates for

group i, which can be related to the X;; E(Y}), or other relevant items. This type of model

expansion was considered for a diagnostics of homoscedasticity in linear regression by Cook
and Weisberg(1983), and for a diagnostics of non-constant variance on random effects in
mixed linear model by Ahn(1990). The form (2) implies that the variance depends on Z; and

) but only through ATZ; and var(e;)=6® when A= 0. Since the variance is a monotonic
function of AT Z. we can think of this method as specifying a direction AT Z: such that the

variance increases in that direction. In the following section, the score test for A= 0 (that is,

for homoscedasticity) in the expanded model (1) is derived. Section 3 reports a simulation
study to investigate the 12 approximation to the null distribution of the score statistic. It is
also compared to loglikelihood ratio test.

2. Score test

The model (1) can be written in matrix form as follows:
Y=X+RA+ & 3)
where Y is an NxI response vector with N = ni+na2+---+n,, and n; equal to the size of

group i, X is an Nxp fixed explanatory variables of matrix, B is a pxl unknown parameter
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vector, R=(R1Rz2---R.:) where RB; is an Nxl indicator vector, with n;'s of 1 for group i
and O elsewhere, A=(A1 A2 ---A)where A; denotes random effect for group i with
A ~N(0,6%1), and £ is an Nx1 error vector with £ ~N (0,0°D) where D is a diagonal
matrix with i-th diagonal element equal to d:= exp(ATZi) with Z, a gxl fixed and known
vector and A, a gxl unknown parameter vector. And, we let E=0% /o’

-

Considering the balanced case with ni,n2, ---,n.=n, we get the following result.

Theorem 1 Let U be a txl vector with elements

.l __nt _ ¢ g nt -
Ul - 6‘2 (n l+nz (1+naz ) Z; (eu 1+n e1.) (4)
— n S ~
where e, = Zl()/ij- xiB )/n is the average residual in group i and B, 0 and ¢ are
£

2 and ¢, respectively under the model (1) with A = 0

maximum likelihood estimates of B, ©

Let Z denote a txq matrix with its i-th row Z:7, a Ixq vector of covariates for group i.

let Z = Z -117Z /t with 1, a tx1 vector of ones. Z is a txq matrix obtained from

Z by subtracting column averages. Then, the score test statistic S for NH: A = 0 vs AH: A

* 0 with 8=(B7,6% & )Tas a nuisance parameter vector is

'ZTu . )

S = %g”z’(??)

Computationally, S is one half of the regression sum of squares from the constructed model
U=X1+Z\+£, Asymptotically as t — o, under NH, S ~ ¥*(q).

proof: The covariance matrix of Y can be written as follows.

1 1
Cov(Y) = Evar(eﬁ) Gi + 64 R RT = oz(gexp(ﬂz,-) Gi+ ¢t RRD (6)

where Gi is an NxN diagonal matrix with one in the i-th group and zero elsewhere.

t
By letting Qx=§exp(iTZi) Gi+ ¢ RRT, we can write Cov(Y) = 0°Qu.

Note that when A =0, Qo= 1 + ¢ R RT, and var(ylx) =06 Q,. In the sequel, we write

Q for Qo @ is a function of M and § and @ is a fundtion of § only. Let 8=(pTo% €))7

denote a parameter vector and L(8,X) the log-likelihood under the expanded model. Then

N N
L@y = -Zriogen-Ltogo?- 2 oglanl -

Z}Jz (Y-XPTQi' (Y-XB) D
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The information matrix  of ( 8, ) can then be partitioned as

- . 2
_ [ ie e . _9°L(BM)
I = { e in } where im = -FE 3 217 8
The total score statistic for ) evaluated under the null hypothesis A = 0 is

Y= 3{: evaluated atA=0, 8= 8, where 8, = (BT, 0% €)7 given A=0, that is, 8,

is the m.l.e of 8 under the null hypothesis. And its asymptotic covariance matrix is estimated

e~ T e~

by C=in( Bore) = s Bohodiss( Bo,ho) i Bo,ho) or simply im - Da Qs ie.
Then the score test statistic S for testing A = Q can be expressed in terms of the quadratic
form as S = VTC™'V. It is well known from Cox and Hinkley (1974) that the limiting
distribution of S is chi-squared with degrees of freedom equal to dim(\) and is central under
Ho,. We now evaluate V and C. First,

aL _ _1
ak 2

< 0 NY-XB) )

The following two results for matrix derivatives from Rogers(1980) will be used to evaluate
the first and second partial derivatives of L.
-1 aQ).

-1 aQ),

L Z-logldil = TREQI5H) 2 @l = - @& &

Let :TI; be the k-th element of g—f:. Then,

—(Y-XB)TQ ' A Q@ (Y-XB) (10

aL _ 1 -1
a5 |l = -5 TR(QAW +

¢

where AFZ; z¥Gi. The =2z is the k th value in the vectorZ: Let

2 —
o = lfnﬁ and'r:n—ﬁth—_?;,Then__I{issimpliﬁedas X_/=% ZQ

where U is a t X 1 vector with its i th elemen

t —
Zl(eij - tpei)?
ui = — T (1D
Y o 85

We turn to evaluation of C=in( 8o,Xe) — i ( Bo.2o)iss( Bo,h0) tim( Bo, o).
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The following identities can be shown under the null hypothesis:

2 in( Gl = =

A T
zYZZ

. _ 1 < B 1l &,
b s(Bode) = (0 —7r2in - IZi 5 20°Z)
c)
xTQ_lx
= 0 0
. _ N
ie ( Bo)o)= 0 20" 507 o
t _t 2
0 202 ¢ 2 (D
Now, ZKETQ im = YE'E, where E = %_l 17Z . Therefore,

C=vZ"7 - ETE)=v(Z77 - %ZTUTZ) =YZ7Z, where Z = z—%l 1Tz

Combining these we obtain in the balanced case the score test statistic S ;

S= 5U'Z(ZD'Zy (12)
Computationally, S is one half of the regression sum of squares from the constructed

1

)

model, U= h,1+Z A+ &, where A, denotes a parameter for intercept, a column vector

of ones, and £, an error vector.

3. Simulation results

A simulation study was conducted in the balanced case to investigate the chi-squared
approximation to the null distribution of the score tests. It was expected that as the number
of group increases the levels of the test will be close to those of appropriate Chi-square
distribution. It was also compared to the loglikelihood ratio test. The score test statistic S is
obtained from the Taylor expansion of the loglikelihood ratio statistic (we’ll call it W) up to
the second order. It is well known that W and S are asymptotically equivalent (Cox and
Hinkley, 1974). An advantage of S over W is that the maximum likelihood estimate of A need
not be calculated. The responses y; are generated from yi = xi'B + Ai + £; An 80x3 matrix
with all entries generated from standard normal distribution is prepared for the matrix X and
a 3x1 vector (5 10 15 )T for the parameter B. The two factors were varied in the simulation;
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the number of of groups (t) : 5, 10, 20, and the size of dimension of 8 (p) : 1, 3. And, The
six combinations of (t,p) are considered - (5,1), (10,1), (20,1), (5,3), (10,3), and (20,3). Each
pair of (t,p) specifies the matrix X. For example, when t=10 and p=3, we use the 40x3
submatix in the top left-hand corner of the 80x3 matrix described above since X is N by p
where N is t times n. The number of observations per group, n was fixed as 4.

The covariates zj are set equal to xj and so, g=p. The Ai's and &;'s are generated as
independent, standard normal deviates. Normal deviates are produced from the uniform stream.
For each of the 499 replications, S and W are computed. Table 1 gives the 0.90, 0.95, 0.975
and 099 points of the sample distributions of S and W. The nominal values from the
appropriate Chi-square distributions are also given.

From Table 1, we can see that as the number of groups, t increases, the percntage points
of both S and W become closer to the corresponding Chi-square nominal values. The values
in parenthesis are those for W. As t increases, S approaches to Chi-square nominal values
from below and W from above. The Chi-squared approximation to S seems appropriate for
large t. However, W is not close to Chi-square nominal values for t=20 and p=3.

Table 1. Simulated percentage points from small-sample null distribution of S and W

P Level t=5 t=10 t=20 %

1 0.90 2.42 (3.51) 242 (298) 2.30 (254) 271
0.95 3.12 (5.46) 4.14 (451) 394 (3.98) 3.84
0.975 4.06 (6.30) 4.96 (5.75) 4.78 (5.26) 5.02
0.99 5.34 (8.32) 5.63 (6.55) 6.51 (6.11) 6.63

3 0.90 5.14 (10.6) 548 (7.88) 6.31 (7.31) 6.25
0.95 6.50 (12.9) 7.59 (9.88) 8.12 (9.20) 7.81
0.975 9.65 (15.6) 9.19 (11.7) 9.43 (11.5) 9.35
0.99 11.2 (19.2) 126 (16.9) 111 (12.8) 11.3

4. Conclusion

It was seen in Section 3 that as the number of groups increases the score statistic
approaches to Chi-square nominal values. It can be concluded that the Chi-square
approximation to the score statistic is appropriate for large t. In the problem of diagnostics for
nonconstant variances in random effect linear model the score test developed in this study
may be very useful. There are a number of open research questions concerning diagnostics
in random effects linear model. It may include the score test for checking the various
assumption, for example, checking normality (Hinkley, 1985) on the variance components in
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mixed linear model, and the improvement of the Chi-squared approximation to the null
distribution of score statistic. It is always recommended to use both the test and the graphical
method in diagnostics. Graphical equivalents to score test may be found similar to the one
proposed by Cook and Weisberg (1983).
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