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Utilizing Order Statistics in
Density Estimationv

W.C. Kim and B.U. Park?

Abstract

In this paper, we discuss simple ways of implementing non-basic kernel density
estimators which typically need extra pilot estimation. The methods utilize order
statistics at the pilot estimation stages. We focus mainly on variable location and
scale kernel density estimator (Jones, Hu and McKay, 1994), but the same idea can
be applied to other methods too.
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1. Introduction.

The kemel density estimator

}(x)=n'lz::1h'lx{h‘1(x—x,-)} (1)

of a density f based on an iid. sample Xi1,X2 ~,X, has bias of order h° as h=h(n) —0 ,

and variance of order (nh) ! as n— ®© and nh— ® . Here, h is the smoothing parameter

that controls the degree of smoothing applied to the data, and K is the kemnel function which

will be taken to be a symmetric probability density hereafter. Good discussion of many
important practical aspects of kernel density estimation may be found in Silverman (1986).
There have been many proposals for improving the bias of kernel density estimators.
Among them, variable bandwidth kernel density estimation (Breiman, Meisel and Purcell, 1977,
and Abramson, 1982) is the most long lived one. The idea is to use varying degrees of

smoothing across the X- space, i.e. replace the constant A in (1) by b(X:), say. It turns

out that it affords bias of order A* if b(x) were taken to be R/f“*(x) . Samiuddin and
El-Sayyad (1990) have proposed varying the location of each kernel, in contrast to varying its
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scale. They showed that adding (constant) XhA (X )/f(Xi) to each X: ensures O(h*)

bias. An intuitive explanation of how it improves the bias is that it moves each data point a
little bit in the direction of increasing density and this helps out with capturing features like
modes in the true density function.

Jones, Hu and McKay (1994) put the aforementioned ideas in more general framework.
They describe a variety of ways in which scale and location variation can be combined to
good theoretical effect. However, all these estimators need extra pilot estimation of f since

the varying location and scale depend on f and its derivatives. In this paper, we describe two
simple ways of utilizing order statistics to estimate these f dependent quantities. The

advantage of these methods is that it does not need extra smoothing for the pilot estimation
and is very easy to implement.

2. The methods.
The general formula which Jones, Hu and McKay (1994) considered is

n 7 S KK K (- X BOXO)). @

If f were known at the pilot stage, one of the many choices in Jones, Hu and McKay (1994)
that affords bias is

a(X)=WAX:), BX)=-hf(X DA2HXi)) 3)
provided fsz (x)dx=1. In what follows, we describe two simple ways of estimating the

above a and B’s.
Method 1. Let F denote the cumulative distribution function of f. Then the first two
derivatives of the quantile function Q(u)=F (u) are
Q(w ={F N w) =1V/AF W)}
Q"(w) ={F  w)” =—f (F WY F W) .
Note that these derivatives have the same functional forms as those of @ and B's in (3).

This observation essentially reduces the estimation of the unknown guantities to that of the
derivatives of the quantile functions. In particular, one can use estimates of @’(i/n) and

Q”’(i/n) to estimate 1/f(X ) and -f(X @)/f(X ) where X () denotes the ith order

statistic. Now, @’(i/n) can be estimated by
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Qim) = Tns_ (X (iv9)=X (i-5))

using the difference between two order statistics whose indices are 2s apart. This is
sometimes called Siddiqui-Bloch-Gastwirth estimate and its asymptotic MSE properties are
well known (see Hall and Sheather, 1988). The idea behind this estimate is that Q’(i/n) can
be approximated by {(Q((i+s)/n)-Q((i-s)/n)}/(2s/n).  This idea can be extended for the

estimation of @”’(i/n). By 'twice differencing’ of order statistics, we obtain

2
Q"(i/n) = "';T (X Ge9-X 0+ X (i-9).

The estimator of f would then be

7(x)=n"g(h6'<i/n>> KR QM) Nx-X o-R*Q7(i/m)/2)).

Method 2. For the second method, let c¢; and s; denote the mean and standard deviation,

respectively, of the ith order statistic X (7. Then two standard asymptotic results from the

theory of order statistics (see page 80 of David, 1981, for example) are as follows. First,

o~ _DPigi v~ pigi _f(Q i)
Ci™Qi* 2(n+2) Qi =Qi 2(n+2) fa(Q,) (4)

where pi=i/(n+1),qi=1-p; Qi=F Y(pi) and @ =Q ()| u-p. Second

2., —Pidi o2 __Pigi 1 -2
Si (n+2) (Qz ) = (n+2) {f(Ql)} . (5)

Write ¢; and s; for simple estimates of ¢; and si. For example, the bootstrap estimates of
Hall and Martin (1988) might be used. Then (4) and (5) suggest the following estimates of o
and B’s:

UX @)=hisi B(X@)=-hRHCi-X &)
where hi=h{(n+2)/piqi} > . Plugging the above estimates into (2) yields another fully

practical density estimator
Rx=n"t 2k ) KA 5D Hx-X w-hH( =X o)),
The major advantage of the above two methods is that they do not need extra smoothing,

as opposed to other non-basic kernel estimators. Detailed investigations into their theoretical
and practical performance are left for further study, however.
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