내부적 독립성에 대한 기하적 검정통계량

  • Published : 1995.04.01

Abstract

내부적 독립성 가설에 대해 전통적인 우도비원리 하에서 나온 검정통계량과 합교원리하에서 나온 검정통계량들에 대한 자료분석적인 측면에서의 대안으로서 기하적 관점에서 유래된 하나의 heuristic 검정통계량이 제안된다. 아울러 기존 검정통계량들의 기하적 의미들도 살펴보았다. 나아가 제안된 검정통계량의 특성 및 점근분포를 유도하였으며, 모의 실험을 통하여 기존 검정통계량들과의 검정력을 비교한다.

Keywords

References

  1. A Single Union-Intersection Statistic for Testing Internal Independence. Principles and Applictions, A presentation on the occasion of the Golden Jubille Celebration Conference of the Indian Statistical Institute Bargmann,R.E.
  2. Journal of the Royal Statistical Society, Series B v.16 A Note on Multiplying Factors for Various Chi-squared Approzimations Bartlett,M.S.
  3. Biometrika v.36 A General Distribution Theory for a class of Likelihood Criteria Box,G.E.P.
  4. Journal of Multibariate Analysis v.9 Asymptotic Expansions for the Distributions of Functions of a Correlation Matrix Konishi,S.
  5. Personal letter with S. Konishi at the Institute of Statistical Mathematics Konishi,S.
  6. Unpulished Ph. D. Dissertation, Korea University A Study on the Geometric Characteristics of Inter-correlation Structure and the Eigen Transformation of Correlation Matrix Lee,Kwangjin
  7. Annals of Mathematical Statistis v.29 Test of Multiple Independence and the Associated Confidence Bounds Roy,S.N.;Bargmann,R.E.
  8. Journal of Multivariate Analysis v.8 Maximum Eccentricity as a Union-Intersection Test Statistic in Multivariate Analysis Shuenemeyer,J.H.;Bargmann,R.E.
  9. Econometrika v.3 On the Indepnedence of k Sets of Normally Distributed Statistical Variables Willks,S.S.