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Adaptive Kernel Density Estimationl’

Faraway,Julian.? and Jhun,Myoungshic3

Abstract

It is shown that the adaptive kernel methods can potentially produce superior
density estimates to the fixed one. In using the adaptive estimates, problems pertain
to the initial choice of the estimate can be solved by iteration. Also, simultaneous
recommended for variety of distributions. Some data-based method for the choice of
the parameters are suggested based on simulation study.

1. Introduction

Given data x;, X,, ** , X, we wish to estimate the unknown underlying density f which

gave rise to these observations. Fixed kemel estimates of the form

- L Ebx ()

1=1

have been extensively investigated in the literature. The idea of varying the bandwidth h to
be larger in regions of data sparsity and smaller in regions where the data is plentiful has
been proposed in the hope of producing less ragged estimates of the density. See Breiman,
Meisel and Purcell(1977) for an early demonstration of this.

Our adaptive kernel density estimates will take the form

flx) = %Zn:h%K(i}i—&—)

where h; = hfy(x;) ™% with fy(x;) being some initial estimate of the density at x;

chosen, for example, by a fixed kernel density estimate. h is the smoothing parameter and
represents the overall amount of smoothing and a is the sensitivity parameter representing
the degree of adaptation to sparsity. Proper selection of h and d is key to getting good kemnel
density estimates. Breiman et al. chose a=1. Abramson(1982) considered this choice a is too
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large and propose @=1/2 on the grounds that this particular choice of a is eliminated the
leading bias term in the expansion of MSE at 0. Silverman(1985) suggests a=1/5 for heuristic
reasons based on the expansion of the mean integrated squared error(MISE).

We consider the problem of selecting the initial estimate of the density, ¢ and h. We show,
by empirical methods, that the problem of choosing the initial estimate of the density may be
eliminated by iteration. We give empirical evidence to show that a=1/2 may not be the best
choice. We then investigate some data-dependent methods (crossvalidation and bootstrap) for
selecting h and do a simulation study to show how they compare with fixed kernel
estimates. Finally, we investigate the inter-relationship between a and h and how both may
be simultaneously selected. We have used the L2 norm as our criterion, but the methods may,
in most part, be extended to the L1 norm.

2. General set-up for simulation results

At this stage we give some common details of the numerical work which was used to
obtain the results following:
The distributions we test our procedures on are
1) Standard Normal : N(0,1)

2) Bimodal Normal : -%—N(—l,—i—) + %N(1,4)

3) Contaminated Normal : %N(0,4) + %N(O,%)

4) Standard Lognormal
5) Cauchy
6) Beta(2,2).

So we have short-tailed, long-tailed and asymmetric densities as test distributions in order
to determine how the various procedures will perform in a wide variety of situations. Some
rescaling and shifting was necessary for some of the distributions to get them fit our range
comfortably.

The kernel used was the Epanechikov kernel

3 (1-x% if Ixl<1
K(x) =
0 otherwise

The simplicity of this kernel speeds computation.
The numerical integration necessary to compute the integrated squared errors
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(ISE = f (f—1)?) was carried out on a grid of 100 points from -5 to 5. ISE’s were

calculated at 20 values of bandwidth chosen evenly spaced on a log scale wide enough to
include almost all conceivable choices of bandwidth generated by the bandwidth selection
procedures for the given test distribution. Appropriate ranges were chosen using a pilot study.
Uniform random numbers were obtained using a multiplicative congruential random number
generator. Random numbers from the required distributions were then obtained using
standard algorithms such as those found in Devroye(1987). Computations were carried out on

a SUN 3/160. MISE's given are 10 2 x MISE.

3. Choice of the initial density estimate and a

In order to get our adaptive Kernel estimates we need to compute
h; = th(x;)"’

We could obtain an initial estimate of the density f by using a fixed kernel density estimate
using bandwidth h. However, we are introducing some undesirable dependency on the choice
of h. It might be noted that the adaptive kernel estimate we make is not highly sensitive to
this choice h, nevertheless, if this unpleasantness may be avoided, it would seem beneficial to
do so. For this reason we propose the following iterative procedure.

Use a fixed kernel estimate based on any h:

1) Compute Rxl),"'. Rxn)-
2)Set f = { at x,.

3) Repeat until convergence.

It is hard to prove the convergence of this iteration rigorously, but a heuristic proof is
possible. For a wide variety of situations this procedure was tested and in every case
convergence was swift and sure. We demonstrate this convergence in a few instances below.
Hence, the initial choice of h is immaterial.

In order to investigate the appropriate choice of @ we plot the ISE’s for the adaptive kernel
estimates at 4 stages of the iteration against log(h) for a sample of size 50 generated from
N(0,1). The results for a=0.5 and a=0.2 for a variety of initial choices of bandwidth(init) are
shown in figure 1. The solid line indicates the adaptive kernel estimate after one step of the
iteration, the dashed lines after two, three and four iterations. Note that no matter what the
initial choice is, the ISE’s converge to the same shape. Note also that when da=05 the
estimates become generally worse as another iteration is done and that the shape of the
curve becomes non-convex whereas no such undesirable behavior occurs for a=0.2. Figure 2
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shows the results of the same procedures applied to a sample from the contaminated normal

distribution -%—N (0,4) +%N(0,%). As one can see, the picture remains very similar.

In conclusion one can say that if one wishes to avoid arbitrary selection of the pilot
estimate, iteration is an appropriate method. Given the proposed alternatives of a=02 and «
=05 then possibly it seems preferable to choose a=0.2, but we can make no clear decision
here on the basis of just these plots. However, we will discuss further the choice of a and
how it relates to h and the underlying true density in section 7.

4. Choice of h

Crossvalidation is presently the most popular method of data-dependent bandwidth
selection. Faraway & Jhun(1990) describe a bootstrap based choice of bandwidth. We employ
both these methods in comparing the performance of fixed and adaptive kernel density
estimates.

Crossvalidation : The crossvalidation criterion will be

eV =[x - @/m 25K

where f: is the density estimate based on all the data except X;.

The crossvalidated choice of bandwidth is that value of h which minimizes CV(h). See
Silverman(1985) for details of this in the context of adaptive kernel density estimation.
Bootstrap : We use a smoothed bootstrap estimate of the MISE to select the bandwidth,

because the unsmoothed bootstrap does not work. If we resample Xj, -+ , X, from the

empirical distribution F, and get estimates of the density T}‘(x) for j =1, -, B

where B is the number of bootstrap samples, then our bootstrapped estimate of the MISE is

B . -
BS=(/B) 2 [ (%) — ()] “dx

- B .
where fg(x) = (1/B) _21 f; (x). However, BS(h) is found to be decreasing in h because
=

it estimates only the variance component of the MISE. This is true for both fixed and
adaptive kernel estimates.
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Figure 1 : Iteration for the choice of ¢ (N(0,1), n=50)
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Figure 2 : Iteration for the choice of a ( -%—N(OA) + -%—N (0,711-), n=50)
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For this reason we use the smoothed bootstrap. We add a random amount hj’ € to each

X; where ¢ is randomly distributed with the kernel K. hj' are obtained from
hJ = h f(x j)«a

for adaptive kernel estimates where h is some initial choice for the bandwidth or

h; = h for fixed kernel estimates where h' is again some initial choice for the bandwidth.

So each X is changed thus
X! — X + he.

We now construct 1; (x) from these new X*'s and construct BS(h,h")

BS(h,h) = (1/B)j2211f[ (0 — T(0] %dx.

Our bootstrap choice of h is made by minimizing BS(h,h’) over h. In our simulation study

we use crossvalidation to select h so this bootstrap method may be viewed as an attempt

to improve on the crossvalidated choice of bandwidth.

5. Simulation study

We have results for sample size 50 for both @=0.5 and @=0.2, 100 replications were used in
each case. B=50 bootstrap samples were used. Of course this is on the low side but these
methods are computationally expensive and some economy was required in order to complete
the simulation in a reasonable time on the equipment available. Furthermore it seems
reasonable to assume that any increase in the number of bootstrap samples taken would only
serve to improve the performance of this estimator.

In our tables(1-4) of results we see adaptive kernel and fixed kernel estimates compared
alongside each other. The same data was used for both. By 'fixed choice’ we mean that fixed
choice of bandwidth that minimizes the MISE over all the samples taken. By 'ISE choice’ we
mean the bandwidth is chosen so as to minimize the ISE for the given sample given
knowledge of the true density. The sample mean of the ISE’s corresponding to these best
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choices is given along with an estimated standard error. The sample mean and SD of the
bandwidth chosen is also given. So the ISE choice estimate is the best one could possibly do
using a kernel density estimate. We present the corresponding statistics for the crossvalidated
choice of bandwidth and the bootatrap choice of bandwidth.

We also give in table 4 the sample comparisons. In practice we would have some data and
would ask "Which method is the best for this data?” So for each sample we check the ISE's
for each of the methods and compare
1) For fixed kernel, the ISE's of the crossvalidated and bootstrap method.(cv/bs)

2) For adaptive kernel for some, the ISE’s of the crossvalidated and bootstrap method.(cv/bs)
3) For the ISE choice, the ISE’s of the fixed kernel and adaptive kernel method for some d
(fix/adp).

What is shown in the table is the percentage of samples where a particular method had a
smaller ISE than the other. Note that the percentages do not all sum to 100% because we
calculate the ISE at only 20 bandwidths and so the remainder represents the percentage of

samples where both methods made the same choice of bandwidth.

Table 1. Fixed Kemnel Density Estimate (n=50)

L. Fixed choice ISE choice Crossvalidation Bootstrap
Distribution . . . .
mise se h !mise se h- sd |mise se h sd mise se h sd
normal 0.79 0.06 1.11 10.73 0.06 1.04 0.19 152 0.13 1.06 0.41 |[1.22 0.09 1.11 0.32
binomial 1.86 0.10 0.64 |[1.77 0.10 0.62 0.10 (250 0.15 0.70 0.22 {2.48 0.15 0.79 0.23
cont normal |1.45 0.09 0.79 |1.39 0.08 0.78 0.12 |2.21 0.15 0.76 0.30 {1.95 0.12 0.86 0.28
lognormal 3.29 0.13 043 13.17 0.12 0.46 0.09 |4.08 0.17 048 0.19 [3.89 0.15 057 0.19
cauchy 578 0.34 0.25 (551 0.34 0.24 0.04 (757 044 028 0.11 |7.20 0.42 0.31 0.10
beta 0.87 0.06 1.20 10.78 0.05 1.17 0.25 |1.39 0.11 1.09 0.38 |[1.16 0.09 1.18 0.28
Table 2. Adaptive Kernel Density Estimate (n=50, a=0.2)
e Fixed choice ISE choice Crossvalidation Bootstrap
Distribution . . . .
mise se h |mise se h sd |mise se h sd mise se h sd
normal 0.71 0.06 0.90 |0.64 0.06 0.90 0.15 {1.39 0.12 092 0.32 |1.15 0.10 0.95 0.25
binomial 1.82 0.11 055 [1.73 0.10 052 0.08 |2.65 0.19 056 0.17 |251 0.16 0.61 0.17
cont normal (1.29 0.08 0.67 [1.21 0.08 0.67 0.11 {2.06 0.14 0.65 0.24 |[1.81 0.11 0.72 0.22
lognormal 3.21 0.13 041 (3.06 0.13 0.40 0.09 |[4.40 0.24 0.40 0.18 |4.03 0.19 0.46 0.17
cauchy 511 0.33 0.27 (481 0.33 0.25 0.05 |[7.12 046 0.29 0.11 6.70 0.44 0.31 0.09
beta 1.00 0.06 1.00 [0.86 0.05 0.96 0.24 ]1.48 0.11 0.92 0.30 {1.29 0.09 0.97 0.23
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Table 3. Adaptive Kernel Density Estimate (n=50, a=0.5)

Distributi Fixed choice ISE choice Crossvalidation Bootstrap
istribution : . . .
mise se h |mise se h sd mise se h sd lmise se h sd
normal 0.74 0.05 0.82 |0.60 0.05 0.72 0.16 1.33 0.11 0.78 0.22 |(1.13 0.10 0.78 0.16
binomial 1.91 013 041 |1.78 0.12 0.39 0.06 1262 0.19 041 0.10 |2.45 0.17 0.43 0.10
cont normal [1.04 0.07 0.61 0.95 0.07 0.59 0.10 |1.82 0.13 0.57 0.18 |1.61 0.11 0.61 0.16
lognormal 3.41 0.15 0.30 [3.09 013 0.32 0.10 455 0.22 034 017 |4.22 0.19 0.38 0.16
cauchy 438 0.31 0.27 |3.97 0.30 0.26 0.06 |658 0.46 0.30 0.11 16.05 0.44 0.32 0.09
beta 1.44 0.06 0.90 [1.08 0.06 0.72 0.25 {1.81 0.10 0.78 0.24 11.76 0.10 0.78 0.20
Table 4. Sample comparison (%)
Distribution Fixed | a=0.2 | a=0.5 .a=0.2 a=0.5
cv bs| cv bs| cv bs|fix adp {fix adp

normal 22 52118 52| 5 56|11 89| 41 59

bimodal 49 39,35 32|14 32|22 78] 38 62

cont normal | 26 44| 26 45! 12 36| 2 98 10 90

lognormal 41 46| 35 48| 23 47| 25 75| 46 54

cauchy 33 40| 30 43|29 42} 0100] 3 97

beta 20 63|20 58|21 36/ 80 20/ 82 18

6. Discussion of results

Comparison of fixed with adaptive kernel estimates : For a=0.2 we see that in terms of
MISE of the fixed and ISE choices of bandwidth and sample comparisons the adaptive is
superior to the fixed kernel in all cases except the Beta distribution. This is not surprising
since Beta(2,2), which we have used, has no tails. Given that our reason for proposing the
adaptive kernel estimate is to adapt for regions where data is sparse it is understandable that
this method should not work so well for this density. In making the same comparisons for o
=0.5 the superiority of the adaptive kernel is not so clear cut as one can see that the fixed
kernel outperforms the adaptive in some instances for distributions other than Beta.

However, when we consider the practical situation where the bandwidth must be chosen
without knowledge of the true density, we may be using some automatic choice of bandwidth
like crossvalidation or bootstrap. Here the results are mixed and there is no clear edge for the
adaptive kernel method. This indicates the problem of selecting the bandwidth for an adaptive
kernel density estimate is more difficult than one for the fixed kernel.

Comparison of Crossvalidation and Bootstrap @ For the adaptive kernel we see that
bootstrap is superior to crossvalidation in terms of MISE and sample comparisons almost
across the board. For the fixed kernel the difference between the two methods is less

pronounced but there is a clear edge to the bootstrap method. Note that bootstrap tends to
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choose wider bandwidths than crossvalidation or the ideal ISE choice. This tendency to
slightly oversmooth may not be unwelcome in practice.

Comparison of a=0.2 with a=0.5 : We can give no clearer preference toward either choice.
It is apparent that the best choice of a is dependent on the underlying density and so we
investigate this problem in the next section. '

7. Simultaneous choice of the smoothing parameters

In order to investigate the behavior of the estimator over simultaneously varying choices of
d and the bandwidth h, we did a further simulation study. This time we computed the
estimate over 20X 20 grid of aXh. 100 replications were made for sample of size 50 and 100.
The same test distributions were used. We display our results in two ways.

The results are displyed in tables 5 and 6. For 'Fixed choice’ we give the fixed values of
d and h which minimizes the MISE over all replications. For the 'ISE choice’, the ISE is
minimized over d and h for each sample and statistics for these choices are given. In the
column marked 'corr’ we give the correlation between the choice of a and h.

Table 5. Adaptive Kernel Density Estimates (n=50)

Distributi Fixed Choice ISE choice
1stnibution mise d h mise se d sd h sd corr
normal 063 020 090 {046 0.05 030 025 090 030 -0.85

bimodal 191 030 050 (L71 009 023 047 058 0.27 -0.95
cont normal 088 070 055 (062 0.05 069 024 053 0.13 -0.83
lognormal (293 010 041 (242 0.12 033 046 039 0.18 -0.79
cauchy 306 070 035 204 018 0.75 025 033 006 020
beta 0.83 -060 223 072 0.06 -044 050 211 1.02 -0.93

Table 6. Adaptive Kernel Density Estimates (n=100)

Distribution .Fixed Choice . ISE choice

mise d h |mise se a sd h sd corr
normal 047 030 082 (032 003 030 026 079 0.28 -091
bimodal 1.04 030 045 {089 005 036 036 044 017 091

cont normal [0.59 0.60 055 (041 0.03 064 021 051 0.12 -0.80
lognormal 195 020 033 (168 008 030 041 032 012 -065
cauchy 152 060 033 [1.03 008 064 021 031 005 038
beta 053 -050 165 044 0.03 -040 054 176 095 -0.92
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Discussion : The optimal choice of a varies greatly. It is large for the contaminated normal
and cauchy, our long tailed distributions. It is quite negative for the beta. This most
interesting since negative choices for @ would not seem reasonable at first glance. However,
with a little thought, one can see how this is reasonable for the beta(2,2). One might expect
the same effect for a uniform distribution. Note also that the sample standard deviations on
the choice of o are relatively large. These observations lead us to propose a databased
method of simultaneous selection of a and bandwidth. A marked negative correlation is
shown between choice of o and bandwidth except in the case of Cauchy. Of course we know
that ¢ and the bandwidth are linked in some non-simple way but it is curious that the
Cauchy should behave in so different manner. The MISE’s of the ISE choices show that, if
we can only choose d and the bandwidth well, we may be able to obtain superior estimates.

Data-based choice of the smoothing parameters : We may use crossvalidation or the
bootstrap method proposed earlier but the major difficulty is that previously we considered
searching over a grid of 20 values of the bandwidth, now we introduce an additional
dimension of d. We must be wary of search methods which depend on convexity but
evaluation at all points on the grid may be prohibitively expensive. For this reason we
restricted ourselves to a 10X8 grid of aXh chosen appropriately for each distribution. A pilot
study showed that crossvalidation performed rather poorly in simutaneously selecting h and d.
This might have been expected since the crossvalidated choice of just h is rather variable
and adding the extra dimension of d just proves to be too much.

However, our bootstrap method requires an initial choice of the parameters. Previously we
used the crossvalidated choice but since this proved to be rather poor, the bootstrap choice
based on these initial values, although an improvement, was not so good either. Iteration of
the bootstrap choice would be advisable but rather expensive computationally. Therefore we
used the bootstrap choice from the fixed kernel method as our initial choice of h and so a=0
was our initial choice of a .

We were able to do 100 replications. We give simple comparisons for the bootstrap fixed
and adaptive versions, otherwise the layout is as before.

Table 7. Bootstrap choice of smoothing parameters (n=50)

s Fixed estimates Adaptive estimates
Distribution . .

mise se h sd [mise se d sd h sd corr
normal 122 009 1.11 032 |1.15 008 019 025 105 030 -0.71

bimodal 248 015 079 023 |252 014 -003 026 081 024 -0.70
cont normal {1.95 0.12 086 028 151 012 046 021 068 020 -0.39
lognormal (389 0.15 057 019 397 016 016 023 061 0.18 -0.50
cauchy 720 042 031 010 511 034 053 026 032 008 025
beta 116 009 1.18 028 [1.14 0.10 -010 034 148 0.56 -0.87
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Table 8. Sample comparison (%)

Bootstrap ISE

Distribution fix adp |fix adp
normal 36 64 | 12 88
bimodal 53 47 7 93
cont normal | 22 78 0 99
lognormal 65 35 7 93
cauchy 13 &7 0 100
beta 44 56 4 96

Discussion : In comparing the bootstrap fixed and adaptive results we see that the
adaptive method does better for these distributions, about the same for two and worse for
one other. Some explanation for this behavior may be found in studying the ISE choices in
the fixed and adaptive cases. Where (given omniscent choice of @) the adaptive kernel method
provides a big increase in performance we can expect the bootstrap adaptive method do well.
Otherwise, when no great improvement is possible, adding data-dependent choice of da serves
mostly to add extra variability to the problem and hence the moderate performance.

8. Conclusion

The use of adaptive kernel methods can potentially produce superior estimates of the
density. Realizing this potential is problematic. One must select both the bandwidth h and
sensitivity parameter d. No fixed choice of d can be recommended. If data-dependent methods
are to be used in selecting parameters, bootstrap is superior to crossvalidation. In practice
there can be no guarantee that adaptive kernel will do better than fixed kernel although there
is some indication that in general one can expect superior performance. We have only studied
the univariate case. In higher dimensions adaptive kernel methods show a more distinct
superiority to the fixed kernel method. In this situation our methods will be more useful.
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