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A Study on the Coefficient of Determination
in Linear Regression Analysis

S.H. ParkD and Sung-im Lee?

Abstract

The coefficient of determination Rz, as the proprtation of ¥y explained by a set of

independent variables x;, x5, ***, X, through a linear regression model, is a very
useful tool in linear regression analysis. Suppose Rzm is the coefficient of
determination when y is regressed only on x; alone. If the independent variables are
correlated, the sum, Rzm-}- R2m+-'-+ Rzyx,, is not equal to R? yepone  Where
R? wearz, 1S the coefficient of determination when y is regressed simultaneously on
X1, X2,"'*, X In this paper it is discussed that under what conditions the sum is
greater than, equal to, or less than R? yxeexp and then the proofs for these

conditions are given. Also illustrated examples are provided. In addition, we will
discuss about inequality between R? ... and the sum, R*, + R’ +--+ R®,.

1. INTRODUCTION
Suppose we have a general linear regression model
yi = Bixyj + Boxy +o+ By t+ €;5=12, = ,n (1)
where ¥, is the jth response for the dependent variable ¥, (xy;, %y, %)) are the jth values

of % independent variables, f; s are regression coefficients and €;'s are error terms which

are identically and independently distributed with mean zero and variance &.

We assume that all variables are standardized such that

;J’j=0 gy;:l,
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;x,-,—:o, gx,-,-z=1, i=1, 2, = k. 2

Note that in the model (1) there is no intercept term Sy, since all variables are standardized.

In regression analysis the coefficient of determination RZ is perhaps one of the most often
quoted statistics in the modeling of relationships between a dependent variable and a set of
independent variables. This coefficient, specific to a given response variable 3y, is generally
defined as the proportion of the variation of ¥ explained by a set of independent variables
X, %3 ', X. As a general rule, the addition of variables will remove unexplained
variation in the response, that is, as the number of independent variables increases the value
of R? in regression equation will increase. Let us consider first the simple case when there
are only two independent variables.

It is desirable to consider the value of R? in the following case :

Regression Coefficient of
Equation Determination
y=a1x1+€1 Rzyxl= 7’zyxl (3)
Y= @yxyt &y Rzm—_- 7/23’3?2 (4)
Y= lel +Bzx2+6 Rz yxlxzz #( 72.\%1 + rzﬂz—zrxxxzryxxryx) (5)

where 7 ,,, is the sample correlation coefficient between x, and %3, 7., is the sample
correlation coefficient between x; and y. When there is only one independent variable in the
regression equation, the coefficient of determination is 7 wy the square of the simple
correlation coefficient between y and x; as shown in the above. The results of R? in these
equations are obtained in Appendix A. If the independent variables, x; and x; are

uncorrelated, then the sum, R, + R®,, is R® ... But, what if they are correlated? It is
highly probable that the sum, R2m+ Rzm, is larger than R? yox,- HOwever, it is possible

that the sum, R* o, T+ Rzyxz, may be smaller than R* yxx, fOr some particular situation. For
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this latter situation, Hamilton(1987) gave a necessary and sufficient condition, which is

27 yx 7 yx,

7 nm (rx,xz—m) > 0. 6)

He mentioned that the inequality R? 22y ? R? v T R? w, issues from multicollinearity. In
this paper, we will mainly consider the problem of making a comparison between R? yxx, and

the sum, R? oo T 1’?2”{2 according to the relationship among dependent and independent

variables. Especially, using the result of simulation we will examine when the situation,

R? iy R+ R, can happen. And using that result we will discuss how it can be

extended to the cases where more variables are involved. It will be also discussed about

inequality between R s,z and the sum rzyxl+'--+ 7. Notice that for k=2,
Hamilton(1987) proved that R? ey = 7 oo, T 7 wlx, Where 7, ., denotes the sample partial
correlation coefficient between two variables X3 and ¥ given x;. Using partial sum approach,

we will extend this result into general 4.

2. Regression with Two Predictor Variables

Consider the following identity in the general linear regression model to give the measure of
precision for the estimated regression equation :

iy = (-9 + (- (7)

where ; is the average of yj's and 51; is the least squares estimate of the jth response. If

we square both sides of this and sum over j = 1 ,2 ,---, =, we obtain
S(yi- wE= Xy — »E+ Ty - )i (8)

We can express (8) in words as follows :
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Total Sum of Squares Sum of Squares

Sum of Squares = due to regression + due to residual errors

We shall be pleased if the Sum of Squares( SS) due to regression is much greater than the

SS due to residual errors. So we can define the R? measure to see that how useful the

regression line will be as a prediction model. We define

Rt =SS due to regression

Total SS
2y =y
= = (9
2 (=
where both summations are over j=1,2, -, n The quantity R’ is commonly called the

coefficient of determination. If we employ the conditions in (2), R? can be written as

R=3 5);2 since y=0 and X y=1.
7 7

For related discussion with R? and correlations, see, for instance, Draper and Smith(1981),

Montgomery(1982), Kleinbaum and Kupper(1983), Hamilton(1992), Park(1991),

Neter,
Wasserman and Kutner(1990) and among many references.

Now consider the problem of making a comparison between the sum, R? s T R? s and

R? yux, in terms of correlations. To simply compare them, we can propose the measure &

which is defined as follows :
Q = Rzyxl + Rzyxz - R2 Yx\ X

= A+ 72”‘2——1—_172——( ot P =27 0? 0” m,

- r"lxz

= T—5— (Pael Pt 7o) — 277 ) (10)

It is obvious that if 7., =0 in (10) that R .= R, + R%,,. In the following we

suppress the case that 7,, is *1 because it is necessary to obtain a non-zero value of the
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determinant D=1— .

Proposition 1. Consider the models (3),(4) and (5) with the coefficients of determination at
the right-hand side. A sufficient condition for the inequality, R® o T R? 2, R? sz 1S

2' r yxlryle .
17 2x) > ———-—rgyx 2. provided 7, 4,75, ¥y, 0.
1 2

Proof. Using the fact that 1— #* a2 0 for all 7, (1< 7 1, <1), it is enough to consider

Q=(1- #,,)Q which is as follows :

Q’=_7’x|x2{7xlaq( 7/Z.Sr’i‘fl + 7))/3‘2) - 27”‘7’}“2}

From the Hamilton’s inequality, then, we can easily find the sufficient condition such that
Q' <0.
Q'=_7’xlxz{7’xm( 7jyx1 + 7waz) - zrﬂxrl”‘z} <0

2V ¥
S Vam (P — 7—‘%) > 0 ( Hamilton's inequality )
yxy Xy

In most practical cases, the condition 7,,7,,7,,>0 holds, since, if 7,,7,,>0, then usually
7 2,20, and if 7 7, <0, then usually 7,, <0. Under this condition it often happens that
207 07 1)
R, + R*,( R i 17 Y.
h2d) yxz YE 1%, x1%; 7/2yx1+ 7)”2
Proposition 2. A sufficient condition for the inequality, R*,, + R®,< R?,, |is

rxlxzryxlryxz < O

Proof. Similarly, as shown in the proof of Proposition 1, consider the sufficient condition
such that @ <0.
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Q’z—rxxx‘z{rxlxz( ’]Yxx + 7/23?12) - Zrﬂnryxz} <0
27 gV yx,

S Vi (Pam— L 7 ) > 0 ( Hamilton’s inequality )
yxy yx,

’/‘2 zrxlxzryxlryxz
x1%;

rzyxl + 7/z.)'xz

=
E Va9 0

The condition 7,7, 7w,<0 as shown above, is the opposite to that of Proposition 1. But

this condition almost covers the situation when the inequality, R®,, + R*,,{ R’ ., can

occur. Notice that the union of two sufficient conditions given in Propositions 1 and 2 is

2

equivalent to a necessary and sufficient condition for the inequality, R*,, + R, R

3. Regression with Three and More
Independent Variables

In a similar way in Section 2, consider the following models with the coefficients of

determination.
Regression Coefficient of
Equation Determination
a1 X, + €1 Rzyxl= 7’2yxl a1
y = ax; + & Rzyxzz Vzm (12)
y = azxz + & Rzyxaz 723“3 (13)
y = pfixi+ Bax; Rzyx.xzxa = % { 7dzyxl(l_' 7/212353)
+83x3 + 6 + 7/2yx2(1— rlex:‘)
+ 72yx-‘(1_ ﬂx,xz) (14)
+2ryx,ryx2(rx,x37xzx3 - rxle)
+2ryxlryxa( rxlxl rxzxa - rx,xa)
+zryxzryxs(rxlxzrxlxa - rxz’-’a) }

where D=1427 15,7 2,7 22, — 7 e — P em— 7 xx, The results of R? in these equations are
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obtained in Appendix A.

Consider a sufficient conditio for the inequality, R, + R wmt R (R, .. in terms of

correlations. We can propose the measure € which is similarly defined as shown in Section
2. That is,

_ 2 2 2 2
Q= R, + R, + R*y, - ) Cou—

:%{zrxlxzrxlxarxzxs( szxl+ 7/2}'xz+ 7/2)5\61)
(Pt Pt P o) Pt At AL (15)

+( 7;}'11 7/2 x2x3+ 7/23’752)( rlexa-'_ 7/23’13 7}5"?1«"‘32)
—zryxlryxz( Y oxxy ¥ oxgny — rx,xz) —_zryxl 7’y:c_q( Ve, ¥ gy — 7 xlx;,)

_zryxzryxs(rx,xzrxlxa - rxzxa)}

Note that the determinant D becomes larger than zero except that the X'X matrix is

singular.

Proposition 3. Consider the models (11)-(14). If the conditions, 7 ax v, V3, <0,
7 n o ¥om, €0 and 740,70, <0, are satisfied, then we obtain  R?,, + R%,, + R’ < R? ...
The proof of the above proposition is given in Appendix B.

In case that more variables are involved, considering Propositions 1,2 and 3, we can assume

that we have R2m+ Rzm-}—"--f— Rzyxk< R? wxeox, under the conditions 7 .,7,,7,, <0, or

217 3.7 ) . P
17 1) 7 1 provided 7,,7,7,>0, for all i#j, i,j=1,2,'-,k However, these
3x; yxj

conditions are so conservative that we need further study using geometric approach or
anything else.

4. Examples

In this section, we will introduce examples of applying Propositions 1,2, and 3. And through
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the simulation of correlations we will also show that under what conditions we can encounter
2 2 2
R > R+ R,

4.1 Example for Proposition 1

1) A simulated set of data is given below :

I I I T T

NO.l X1 X9 y |NO. | X1 X2 y | NO.I X1 X9 y
11178 182 44 11 | 168 168 44 21| 174 176 57
218 18 40 12 | 186 192 45 22| 156 165 o4
3| 156 168 44 13 | 176 176 45 23| 164 166 52
41166 172 42 14 | 162 164 47 24| 146 155 50
51178 180 38 15 | 166 170 54 25| 172 172 6l
6| 176 176 47 16 | 180 18 49 26 | 168 172 54
71176 180 40 17 | 168 172 51 271186 18 51
81162 170 43 18 | 162 168 51 28 | 148 155 57
91174 176 44 19 {162 164 48 29| 186 183 49

10| 170 186 38 20 | 168 168 49 30| 170 176 48

31170 172 52

2) Correlation Matrix

y X X2
y 1 -.23674 -.39797 = ¥y, =7.23674, 7,,=-.39797,
X1 -.23674 1 92975 7 2, =92975
20742, 7 42
x -.39797 92975 1 ———=8792
2 Pt o,

3) For this example, we have the values of R? as follows :

Regression Coefficient of
Equation Determination
y=a1x1+61 Rzyxlz 0560
y= 02x2_+62 Rzyxf 1584
sum : 2144
y=pBix1+Byxy te R% .= 2894

From the examination of the correlation matrix it reveals that the conditions, 7 ;775,20

27 32,7 x| . e . .
& |7 ) >—7§%—- are satisfied. Under this situation we confirm that R?,., is larger
yxy yxa
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than the sum, R®, + R? »,- For several other cases of Proposition 1, see Table 1.

Table 1. Some cases of Proposition 1

rxlxl ryx, r)'xz R2 yx\ X3 Rz)"l + Rzyxz dﬁ 1 dlﬁ?
(= Rt R Rpu)  (=lry) ——3208
09 01 02 074 05 -.024 100
09 01 04 516 17 -.346 429
07 01 04 224 17 -.064 229
07 01 06 561 37 -.191 376
05 01 04 173 17 -.003 029
05 01 06 413 37 -.043 176
05 01 08 760 65 -.110 254
03 01 08 662 65 -.012 054

4.2 Example for Proposition 2

1) A simulated set of data is given below :

No. X1 X2 y
1 44 44 182
2 45 40 185
3 54 44 168
4 59 42 172
5 49 38 180
6 44 47 176
7 45 40 180
8 49 43 170
9 39 4 176

10 60 38 186

2) Correlation Matrix

y X1 X9
y 1 -12804 -56287 = 7,,=-12804, 7, =~ 56287,
x; -.12804 1 -.39972 ¥ yyx,= 39972

xg -.56287 -.39972 1




3) For this example, we have

the values of R? as follows :

Regression Coefficient of
Equation Determination
y=ax;t& Rzyxf 0164
V= @xy+ & R? = 3168
szum 3332
y=PBx; +Bxp te Ry x,= 4652
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From the examination of the correlation matrix it reveals that the condition, 7 ..,773x,<0,

is satisfied. Under this condition we confirm that

R? yux, 1S larger than the sum,

R, + R?,,.. For several other cases of Proposition 2, see Table 2.

4.3 Example for Proposition 3

D

Table 2. Some cases of Proposition 2

Yxizg Vomi Vomg R iy Rzm + Rzm Diff 1
(= RPo+ R~ R L)
09 01 -02 453 05 -403
0.7 01 -04 443 17 -.273
07 01 -06 890 37 -520
05 01 -04 .280 17 -.110
05 01 -06 573 37 -.203
05 01 -08 973 65 -.323
03 01 -04 213 17 -.043
03 01 -06 446 37 -.076
03 01 -08 767 65 -117

A simulated set of data is given below :

No 1 X1 X9 X3 y
1 44 44 98 182
2 45 40 57 185
3 54 44 58 168
4 59 42 86 172
5 49 38 98 180
6 44 47 77 176
7 45 40 57 180
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2) Correlation Matrix

y X1 X9 X3
y 1 -75367 -.43359 11742 = » v, =~ 10367, ¥y, = 43359,
X 77 1 -079% 07061 Po= L1742, 7, = 07926,
x, -A3359 -079%6 1 00330 7 rs= 07061, 7., =00330

x3 11742 07061 00330 1

3) For this example, we have the values of R? as follows :

Regression Coefficient of
Equation Determination
y=ax,+€ R%, = 5680
Y= ax,+ &, R%,.= 1880
y=asx3+e; R, = 0138
sum @ 7698

y=Bix1+ Byt By te  RE .= 8437

It is clear from the correlation matrix that the conditions of Proposition 3 are satisfied.

That is, 7157 7%<0, 7 2%, 3%, 7%, <0 and ¥ ,,.7,..7,,,<0. Under these conditions we

confirm that R?,. .., is larger than the sum, R? wt R+ R,

5. Remarks

Ott(1993) stated general linear model in his textbook as follows: ” When the independent
variables are themselves correlated, it is difficult to separate R? into the independent
contribution of each independent variable. For these situations, where the independent variables

account for overlapping pieces of the variability in the jy-values, we often find that

R yppers < ryxlz + 7yx,2 + e+ 7’yx,,2- (16)

Hamilton(1987) stated that statement (16) (Hamilton quoted this statement in Ott(1984))
reflected erroneous belief in such a way that correlated explanatory variables contain only
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redundant information about y. Thus he corrected (16) for k=2, R% .., < 7’4+ 7,7 as

presented in the introduction. Similarly we will correct (16) for general k. It is equal to find

the upper bound for R wozper - Consider first the statement (16) for 4=3. The sum of

squares for regression, SSR(x) x; X3 ) can be partitioned as
SSR(xl X2 'X3) = SSR(xll X9 ,x3) + SSR(le xl) + SSR(JCI ), Qa7

where SSR(x;) is the Sum of Squares ( SS) due to regressing y on xj, SSR(x,| x,) is the
extra SS due to adding x; to a model with x;, and SSR(xj| x; x3) is the extra SS due
to adding x3 to a model with x; and x; . If we express each SS in statement (17) in terms

of sample correlation coefficients and sample partial correlation coefficients, then we can
represent it as follows :

SSR(x, )= 7., SST
SSR(xy %) = 7 e (1— 7*2) SST

SSR(xl X2 X3 ) = ’2 yx“xzxg(l - 7/2 yxzm)(l - 7/23”51) SST

where 7 4., measures the contribution of adding the first order term x3 to the model after
the effects of the first order terms x;, x, are controlled for. Kleinbaum and Kupper(1978)

called this "multiple-partial correlation coefficient”. Relating R? sy, WE Can obtain

R s = Pt P (1= Pu)+ 7P e, (1= 7 e X1 7 1)

Therefore, a correct version of (16) for k=3 is R’ [ Pt Pt P s It
1X2X3 yxy XXy VXX 1 X2

is repeatedly calculated in the same way, we can obtain the following for general £ :

RZ P 7),\”‘1 + 7’2 X%y (1 - 7/2)/11) + 7/2 YXyX1Xg (1 - 72 yx2,x,)(1 - 7/2yx1)
-+ 7/2 FXy X XpX3 (1 - 7’2 yx:ﬂxlxz)(l - 7’2 ylexl)(l - 7;}‘5\71)

+ eee _.|...
+ 7) XXX oy (1 - 72 yxﬁfllx,--.x,,z)(l - 7’2 W;—2|X1""-'k~:|) o (1 - szxl)
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Thus, when the independent variables are correlated, namely, there is multicollinearity in
multiple regression, we can state that

2
R pyons € Pt Pt P ot o+ G

Appendix A

Note that with the underlying variables R? is expressed in matrix forms as follows :

(¢)) y = aix; + g
= R,= ¥YX (XX 'Xy
= 7,2wq
where 2=y, 9,
X1, X21,"°" Xm
X12, X2, Xp2
X=| x5 2%
Xin, Xon,"" s Xen
@ y = @y + &
2
= R T VZyxz

@ y= Bix; + Bx; + ¢

-1
1 rxlxz
2 — (4
= kR yoxy (ryxl 7)’12) ¥ iy 1 ( yx,)

Y 3,

1
= 1— 7 7 {7 (v, — 7 a? e T 7yxz(7'yxz_rxm7yx1)}
%,

® y = [ix; + Boxy + B3x3 + ¢

1 v XXz 4 X x3 ¥ yx,
¥ XXy 1 rxzxz 7yxz

2 —
= R = ( Ve, Vimy ¥osx, ) 1
4 XX r X2X3 4 X3
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{ 7/2)’3\?1(1_ 7)1213)'*_ #yxz(l— szlx_;)

+ 7; ¥xy (1 - 7) anz) +27ﬂlr}9‘z(7’xl"s rxzx_, - rx,xz)
+zryx|ryxn(rxlxz rx,xg - rxlxa)
+2r}"-\'2rﬁa(rxlxz rz,x; - rxgx;,) }

1
D

where D=1427 0,7 25,7 530, — 721112_ "zxxxa_ 1’2,,m.

Appendix B

Proof of Proposition 3.
From (13) we only want to check the sign of the measure Q. So using the fact that if

¥ xxp ¥z, and 7y, are near to zero then D = 1 + 27 0,7 s, 2~ %x,xz—rzx,xa_ rzxm >0.

We can rewrite @ as follows:

Q= — 7x1x22( 7’yx,2+ 7yx22)_ 7x2x;,2( 7yxzz+ ryx.qz)— 7’x1x32( ryx12+ 7}132) D
42 (7 gV ve F 7 wins TP T 7 o) )
+2r w ¥ xlxz( Yoy ¥ ¥ oy — 7 yx,rxzxa) ©)
+2r e,V xgxg( Yom VoV oy, — V'om” xlxg) @
_zryxarxlx3( Yo Ve ey — 7 e,V xlxz) ®

7 ey v, 32, €0
Here, suppose that |7 7?0

v omy S d |

Then in the above we can obtain the minus sign of Q by showing that all the terms @ -
® will be less than zero, respectively, under the conditions in Proposition 5.
(i) Proof of @ and @
It is trivial that the equations, @O and @,are less than zero under the conditions.

(ii) Proof of ®
Consider all possible signs of correlations satisfying the conditions, and let
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rﬁlrxlxz

r xlxarxzxar}'xl - r}'xar XXy ®

We then prove that the equation @ is less than zero by showing that the sign of
multiplication s by ¢ is minus. That is ,we can obtain the following:

ryxl rxlxz ryxz ryxg rx,x_—, erZ:g rx,xarxgxar 3y, - ryxarxm S t ®( = SX t)
+ - + + - - + + -+ -
+ - + - + + + + - 4+ -
- + + + + - + + -+ -
- + + - ~ + + + -+ -
+ + - + - + - - + - -
+ + - + - + - - + - -
- - - + + + - - + - -

This result shows that the equation @ is less than zero under the conditions.
(iii) Proof of @
It can be easily proved in the same way as shown in (ii). Let

s = rmr Za%a
t = rxlerxlx.’iry-xZ— ryx,rxlxg-
Then we have the following :
7)’372 rxzxa 7 yxs ryxl 7"17‘3 rxlxz rxlxzrxlx;,ryxz - ryxlrxlei st @( =sx t)
+ - + + - - + + - 4+ -
+ - + - + + + + - 4 -
- + + + + - + + -+ -
- + + - - + + + -+ -
+ + - + - + - - + - -
+ + - + - + - - + - -
- - - + + + - - + - -
_ - - — - + —_ — + - _—

(iv) Proof of ®
It can be easily proved in the similar way as shown in (ii) and (iii).

Let s = 7474,

P = ¥am? 2V e, — Vomy? 2y

Then we have the following :
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ryxs rxlxil ryl’x rxle rxzxn ryxz rx1x2r xzxar ¥x3 - ryxzrx,xz st ®( =§x t)

+ - + + + - + + -+ -
+ - + - - + + + -+ -
- + + + - - + + - 4+ -
- + + - + + + + -+ -
+ + - + - + - - + - -
+ + - - - + - - + - -
- - - + + + - - + -

-— —_ —_ —_ —_ - — - + - -
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