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On Fitting Polynomial Measurement Error Models
with Vector Predictorl
- When Interactions Exist among Predictors -

Myung-Sang Moon?

Abstract

An estimator of coefficients of polynomial measurement error model with vector
predictor and first-order interaction terms is derived using Hermite polynomial.
Asymptotic normality of estimator is provided and some simulation study is
performed to compare the small sample properties of derived estimator with those of
OLS estimator.

1. Introduction

In traditional regression with error-free predictors, polynomial model is a linear model. But
it belongs to a nonlinear model in measurement error model(MEM), and it is not easy to
derive consistent estimators of parameters due to the power terms of the error-free predictors.
Some consistent estimation methods for the polynomial MEM were proposed in recent years.
They include Wolter & Fuller(1982) for the quadratic functional model, Chan & Mak(1985),
Stefanski(1985, 1989) and Moon & Gunst(1995) for the A-th order polynomial MEM. Their
results were obtained without assuming decreasing error variances. Moon and Gunst(1994)
derived estimator for the A-th order polynomial MEM assuming decreasing error variance and
showed that it is asymptotically normally distributed. They also presented small-sample
simulation results for cubic model and showed that their estimator possesses better properties
than those of OLS estimator in MSE sense, especially when sample size is relatively large.

All the estimation methods mentioned above were derived for the polynomial MEM with one
predictor and one response variable. Since polynomial MEM with vector predictor is more
practical one and is of more interest, it deserves to be studied. In this paper, estimation
method for the polynomial MEM with vector predictor is investigated. To make it more
practical, first-order interaction terms among predictors are included in the model. In Section
2, notation and some calculation results needed to define an estimator are introduced.
Basically, notation used in this paper is similar to that of Moon and Gunst(1994). The model
contains more terms and the dimension of vectors and matrices is changed accordingly.
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However, this minor change results in much more complex calculation in deriving an
estimator. Derived estimator and its properties are presented in Section 3. Simulation results
comparing the small-sample properties of derived estimator with those of OLS estimator, and
some concluding remarks are reported in Section 4.

2. Model and Estimator

Polynomial MEM studied in this work is no-equation-error functional model containing
p(p=2) predictors and first-order interaction terms among them. However, the model with 2
predictors is enough since the results of that model can be easily extended to the model with
p(p=3) predictors. Therefore, p is set equal to 2 in this paper. The specific form of the
model investigated is given as follows:

- 3 k
¢; =By + Bumy + .31271'%;' + Buant o+ P

g

* Bumy + Bumh + Bumy + v+ Bumy
+ B3y 7y,
= 7 B, 1=1,2,3,,n, (2.1)
where
mi= (1, m; nl, wl,e, wl, mu T, mE, e, wh myumy)',

B= (B, Bu, B B, B Bu, Bz Bxn -, Bu Bs).

Note that in this model, an unobservable response variable ¢; is related to an unobservable
nonstochastic predictors x;; and 7, through a k-th and /-th order polynomial equation

respectively. Also first-order interaction term m;my; is included. Bold-face letters denote

vectors or matrices and all vectors are column ones in this work. As mentioned, true response
and true predictor variables are unobservable ones and they are contaminated as follows due
to measurement errors:

yi = ¢ + v, Xy = my; t+ oy, Xoi = Ty + uy.

We observe only 2z;= (y;, x};, xz,-)'; ie, 2;= &+ w; with &;= (¢;, 7y, 7r2,~)t denoting

. ¢
the vector of error-free true variates and w;= (v;, u;;, uy)' the vector of measurement
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errors. The vector of measurement errors w; are assumed to be iid. N0, X,,) with

known covariance matrix

Ow Oy Oy
Xuw = | O O Op
Oy 091 O

—

Let H,(Z) be the m-th Hermite polynomial in normal random variate Z with mean u

and variance ¢, and let's define P,(Z) = ¢"H,(Z/0c). Then, we have

E(P,(2)}= u". (2.2)

Let's define p; as an unbiased estimator of a; obtained using P,(Z) and (22), and f; as

a vector of deviations from the corresponding powers of the error-free predictors. That is,

pi = @t fi
= (1, Pi(x10), Pz(xli), -, Py, Pl(xZi), Py(x3i), -, Pfx3), Py(x1) Py(x5:)- 0'12)t,

where

fi =0, Pl(xli)—ﬂli, Pz(xu)_ﬂ'%i, "'yPk(xli)_”fi,
Py(%5) — 5, Po(35) — 13z, =, P(x3;) — 15, Py(x1)Py(50) —O1p— myi 7).

Also define (k+17+3) x 1 vectors ¢; 7; and g; by
tyt t\¢ i\t
¢c;= (¢, x; ), r.=(v;, fi) and gi=c¢;t ri=(y, p;)"

The symmetric (k+7{+3) x (k+/+3) covariance matrix of #; (vector of measurement

errors of g;) is necessary to derive an estimator of B, and it is obtained through tedious

calculations.
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where 2,;; = Cou(v;, v;) = 0,,
Qi3 = Cov(v;, Pxy) —ml)=imiiton, 7=1,2,k
Q. = Cov(v;, PLxy) — 1) =imy 0, 7=1,2,, 1,
Ly5; = Cotv;, x1i% — 01 = M1iMz) = MY i0p + Tp:0y,
Oy = mali 'myoy + majiop + m(m—=1) 77 2010, m=1,2,-,k
Qs = may ' mop +magiop +m(m=1)15 topoy, m=1,2,-,1,

_ 2
Qss5i = Ti0m + 7501 + 2T Ty 013 + Gy + 011 0.

Q- and Qy; are obtained following the same step presented in Moon & Gunst(1994).
The remaining element of Q;, that is Qs,, is derived as follows.

. 2n—1
i) COU{PZM—I(xlz) 7[%:”1 PZn—l(sz) 71'2:1

Cm~=1)! 2n—1)! ot ' ol € E(x% x5!

_ < ‘_ m+n—(j+c)
= 22D 2—D! (m—)1 2e=DI (n—o)l 277+ 0T+3 »

ii) COU{PZm(xlz 71’%1 , PZn(th) 71'21 }

an( [y Gto '(Zm)l(?n)!dﬁ_’dé’z’cE(xfifEf)(+)
e=0 CHt (m—p! 2! (m—c)l 2™y

H
|1M§

iil) Cov{Pz,,,_l(xli) - 1?’_1» P2n(x2i) - ”57}
= < _ m+n—(i+c) . (zm l)' (zn)' 011—1022 CE(x? lxglc)
2 2 (-1 (2i—D! (m—)! (20)! (n—o)) 27 U+o -

j=1lc=0

Q; contains cross-product terms of powers of x;; and my; An unbiased estimator of

—~~

LQ;, Q; is obtained by using the relations given in i), ii) and iii) in reverse direction and

the equation (2.2). Before developing an estimator, it is convenient to introduce the following

notations.
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n

Mgg=%§1 g.-g,'~=[ A;;y zy”], TCC=%Z c,~c$=[ TTW’ ;4”'
py b2 x$ >

‘Qi —_ [ Ow Qvﬂ:)] , er i L ﬁ .Q'_ — [ Oy .Q,,/] ,
Q.5 Ly n

3. Estimator and Its Properties

Wolter and Fuller's(1982) estimation method for the quadratic model can be extended to
derive an estimator. To do so, define an estimator of 8 to be that which minimizes the

function

4
wo) = Ml 3.1)

where 8= (1, — Bf)'. Fuller showed that the minimization of (3.1) yields MLE for linear
functional MEM. However, it is not true in polynomial MEM. The minimization of h( @) with

respect to B results in

~

IB:‘( Mpp—a Aaf/)_l( Mpy—a Aafv)’ (3.2)

where @ is the smallest root of | Mg — @ 2,l=0.

Asymptotic properties of 2? are stated in the following Theorem. It is adapted from Wolter

and Fuller(1982) for the quadratic model except assumption about the convergence of

n .
n! _21 (174’ |1724*) and dimension of some vectors and matrices. Brief proof of Theorem
~

including the comment on the development of different assumption is provided.

Theorem Let the model (2.1) define a polynomial functional MEM containing 2 predictors
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with first-order interaction term. Assume the followings.

(a) For all 7 in an open sphere containing the true parameter, B,
0<CL<(, - 7) e, U, — 7)

for any »> k+1[+2, where L is a fixed constant.

(b) T, is a positive definite matrix for all #> 2+ /+2 and

lim Yy = Iy,
n

—» 00

where I, is positive definite.

) »n! ﬁllﬂl,j converges for j=2k+1 to 4k—2+5,
a7l i:llﬂz,{h converges for h=2I1+1 to 4/—2+46, and

n! ﬁllﬂl,{jlnz,lh converges for j=1,2,3,-,3k—1+4, and

h=1,2,3,-,3l—14+6, where 6>0.

(d) lim »7! ﬁl abs( Q) = 5 ,where abs( ;) denotes a (k+/+3)x (£+/+3) matrix whose

n—>co

elements are the absolute values of the elements of Q; and where each element of

* . . .
= is finite.

Then, B 2 Band n"( B— B) % N0, IZ'G T3, where

G= lim »n7! ﬁ}lE( $: 8D, b= piei— (6°0,07'(f— 0 0,0) O, — [ J

e;=gi0=ri0, Q,= n' Z:I Qi =n"" El( Ly — Ly B) and

Q.= Quiy— LuiB.
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Proof Since @ is the smallest root of | My, — @ .'é,,l = (0, we have

= "M — = where 6" = (1, — 7')". Let = ’lth; y g and

~~
g, = lim Q,,. Since M, and @, are consistent estimators of I'.c + &,, and &

=y
700
respectively,
oA g + 8,6 : o
plim o= ™0 ( g€ ’:) =1+ M - -1 (33)
6 g =, 0 0 0 E,,

where r=[ B8 1 8" . Therefore, we have

25 8. (3.4)
Now, by definition of 8 and 2
(M,—22,)0=0. (35)
Premultiplying (3.5) by ' leads to
1o C{a M) -0} 6 My B(M+ 2, - 0,)0
0'{4 09,)+ 2,}6 0 0,80

where (4 My) = Mg — E( My) = 0,(n ") and (4 ©,,) = ©,,— ©0,,=0,(n""%),
Since

(40= 06— 0= [ -(OA;§)] = 0,(1) by (3.4), we have

a—1=0,(n""? (3.7



8 Mpyung-Sang Moon

from the mid-side of (3.6). Rewrite /B — B as follows:

~

B—B=(M,—22,){M,—20,—( M,-a Q,) B). (38)

By multiplying (3.7) to both terms of right-hand side of (3.8), we get =0+ O,,(n_l/z).

Since 8 0, 0= 0' 2, 0+0,(n"") and 6'{ M,, —E( M)+ 2, — 2,) 8-

n

n! > el — ¢ .6,, 0+ 0,( n7'), it is easy to derive from the right-side of (3.6) that

f=1

a—1= (n“ S -6 0, 0)( 0 2,06 +0,(n).

Therefore, we have Vn( /B -B = 1 —\71;; 2 $:+ 0,( n~12), Limiting distribution of
~ a1 & .
V(B — B) is the same as that of T Tn- Z:l é.. To investigate their limiting

distribution, let A be an arbitrary nonzero (k+7+2)x1 vector and consider 717[ Z} Al é;.

The term containing the highest power of 71{,- 7 in E ( .98 is ( 6 Q; 0) 7 mh, and it

. k= 40~ 3k—1 _3i-1
contains terms from my; to 71"{,' 2 Ty; to oy 2 and from ;Mo to my; 17r2,- . Therefore,

% B A" #17+7) |
@ = lim

00 na/z{ Ay gl E( ¢i¢f)3

n—li;lE{l At ¢i|2+8}
}(2+a)/2 =0,

lim

e g: E{( 2" 4%
[ 2 ]

by assumptions (b) and (c). Therefore, using Liapounov CLT,
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The result of the theorem follows from assumption (b) and multivariate CLT.

4. Simulation Results

In this Section, some simulation results are presented to compare the small sample
properties of derived estimator with those of OLS estimator. Wolter and Fuller(1982) introduce
a small-order modification in their estimator of the quadratic model since their estimator has
heavy tail problems due to the presence of a small number of extreme observations in their
preliminary simulation results. Same kind of problem happened in this work and the derived
estimator is modified in the same manner as given by Wolter and Fuller. The modified form
of the estimator is given by

By = | M, — (-2 ﬁ,,}_l{ M,—(a-2)2,),

and this one is used in the simulation for 2= 0, 4, 6.

The polynomial MEM studied in the simulation is given by

¢; = By + Bumui + Br T+ By my + Bz T+ Bamiimy,

where w; ~ N(0, X.,,) with completely known ZX,,. The true B’ is set equal to (0.5, 0.0,

1.0, 0.0, -1.0, 1.0). Data sets, and the remaining parameters of the model are selected from one
of the followings:
1) Data set and sample sizes:

i) Data set A, n=36: 1} = x3 = ( -05, -03, -0.1, 0.1, 0.3, 0.5), and each
. ( 7y;, Ty is obtained as a permutation of element from each 7} and m3.
ii) Data set A, =108 Duplicate Data set given in i) three times.
iii) Data set B, »=36: x} = x5 = ( -04, -0.3, -0.15, -0.05, 0.4, 0.5), and each
(my;, 7o) is obtained as a permutation of element from each x{ and 5.

iv) Data set B, #=108: Duplicate Data set given in iii) three times.

2) Covariance matrices of measurement error vector, X,
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I I I v v
0.06 0.00 0.00 0.04 0.00 0.00 0.04 0.02 0.02 0.02 0.00 0.00 0.005 0.000 0.000
0.06 0.00 0.04 0.00J 0.04 0.01] [ 0.02 0.00} ( 0.005 0.000
0.06 0.04 0.04 0.02 0.005

Five covariance matrices are selected so that the ratios of the error variance to the mean

square for 7x; take the similar values as those of Wolter & Fuller(1982). Covariance matrix III
is included in order to assess the performance of an estimator when the measurement errors

are correlated. Multivariate normal variates w; with covariance matrix 2w Were generated

by IMSL subroutine RNMVN. Data sets A, B are chosen to see the effects of collinearity.
Although collinearity is not severe in both cases, data set B contains stronger collinearity
problem than data set A since it is not equally spaced around zero.

For each combination of four data sets and five X,,, 200 replication results are

summarized in Table 1. It includes the ratios of TSE{ /B(h)} to TSE{ /BOLS} where TSE is

the sum of six MSE. As was expected, the results of data set A are better than those of
data set B except Parameter set V. And as the sample size is increased, these ratios reduced

much which implies that the performance of E(h) relative that of /f}oz.s becomes better and
better for larger samples. For data set A, direct comparison of ,[}(4) and z’om shows that

’[}(4) performs better when #=108 but ’BOLS does when #»=36. But for data set B, /BOLS is

better in almost cases regardless of sample size. The examination of Table 2 and Table 3,
which contain more detailed information on the estimators, reveals that it is due to much less

variances of Eoz,s than those of /3(4) although biases of /BOLS are relatively large. The
situation is somewhat different for 2?(6). That is, /B(G) is better than §0L5 except for data
set B with #=36 and Parameter Set I, II and III, although variances of EOLS is much less

than those of ’3(6) as was in 3’(4). ,

As a conclusion, E(h), h=4,6, is considered better than ’BOLS in almost all cases
because of large biases of EOLS. Although TSE{ /BOLS} is less in some cases, it is mainly
due to small variances of EOLS. Table 2 and Table 3 show those features clearly. Finally,

the choice between 3(4) and /3(6) goes to /B(G) , especially for the data set with a mild or

severe collinearity problem and/or with small samples.
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Table 1. Ratios of TSE#

Parameter Set

Data 1 I I v ' Vs
Set B(K) n: 36 108 36 108 36 108 36 108 36 108
B(0) * 3 * * 173 133 208 230 57 98 39
A B 113 99 116 85 112 86 106 49 89 38
B(6) 9% 76 93 70 91 69 91 45 8 38
B(0) x % x o= x x + 194 100 35
B B 124 123 128 109 120 107 121 62 84 33
B(6) 107 96 107 87 103 82 98 53 79 32

# 100 ( TSE{R(W)}/ TSE{ Bors})), h=0,4,6.

¥ * inicates value > 1,000.
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Table 2. Estimator Bias and Variance, Parameter Set III, n=36

Data
Set Estimator ,8() B 1 B 2 ﬂ 3 B 4 B 5 Absé)l%ll;lt]e
~ (a) Bias
Bors 013 105 -684 091 579  -353 1.825
R(0) -.129 199 -577  -384 2623 935 4.847
A(4) .005 021 -286  .007 280  -.028 627
B(6) .009 034  -383 020 343 -.090 879
A ~ (b) Variance
Bors .003 011 061 009 065 081 230
R(0) 3294 2157 172060 20.014 1392560 27587 1617.672
B(4) .009 027 333 025 405 352 1.151
B(6) 007 022 227 020 269 254 799
N (a) Bias
Bors 042 197 -921 036 587  -327 2.110
A(0) 098  -.067 159 2056 -1.060 -.070 1.659
R(4) .041 104 -687 -.016 286  -.058 1.192
B(6) 041 125 =757 -.010 361 -.107 1.401
B —~ (b) Variance
Bors 004 011 082 011 073 075 256
R(D) 684 1978 36911 4292 79933 13.186 136.984
R(4) 011 033 512 037 480 269 1.342
B(6) 008 025 337 029 319 198 916
Table 3. Estimator Bias and Variance, Parameter Set III, n=108
Data . Absolute
Set Estimator B0 B B B3 B Bs Sum
~ (a) Bias
Bors 014 116 -735 118 605  -.413 2.001
A(0) . .946 522 -10956 -1991 3.898 -2.283 20.596
R(4) .008 016 -025 014 -033 -.009 105
B(6) 010 018  -090 017 014 -.027 176
A N (b) Variance
Bors .001 .003 015 003 017 022 061
L0) 18074 5152 2491163 802.15 3261.84 1063.08 30270.97
B(4) 012 013 323 013 422 213 996
B(6) 009 012 252 012 325 180 790
—~ , (a) Bias
Bors 031 216  -906 040 645  -.402 2.240
R(0) 123 -.007 165 165 -1.193  -.075 1.728
B(4) -.006 037  -133 -013 152 022 363
B(6) 002 055  -245 -016 196 -.007 521
B N (b) Variance
Bors .001 004 018  .002 019 024 .068
R(0) 6.147 1712 46389 7817 302675  6.352 371.092
y:10))! 018 021 545 025 761 206 1.576
B(6) 013 017 391 018 537 164 1.140




