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Reliability of RC Beams Designed for Flexure
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Abstract

Reliability of RC beams designed for flexure under the provisions of ACI Building Code is
analyzed. The results are compared with those obtained previously. 1t is shown that in some
cases the reliability is inadequate and changes substantially with reinforcement ratio. The prob-
ahility of brittle failure appears to be rather high. The reasons for these phenomena are revealed
and some measures to remedy the situation are recommended, Much attention is given to the
conditions asthey stand at present in Korea.
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1. Introduction liability indices go well below 3.2. The reasons
for these phenomena are revealed and some
Rehability of RC beams designed for flexure measures to remedy the situation are recom-
under the provisions of ACI Building Code [ 1] mended. Much attention is given to the condi-
was investigated in several papers(e.g., |2 tions as they stand at present in Korea.
81). For example, the implication of the analy
sis in Ref [8] is that ACI Code 318-89 gives a 2. Initial data
uniform reliability, All component reliability
indices vary from 3.2 to 4.2. In beams designed for flexure three modes
The aim of this paper is to show that in of bending failure are possible depending on
some cases probability of brittle failure 1s rat whether the beam 1s lghtly, moderately or
her high, reliability 1s inadequate and re over-reinforced, In Ref 8] to distinguish be-
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tween the modes the following limit-state fun-

ctions are used:

gi=A—0b,d (1)
y
0.858:fc 87000
=A bd (2)
B AT T T F00+H,
Here
A, ==area of tension reinforcement (in);

by.d,h =width, effective depth and height
of beam cross section (in) ;

f.f, =compressive strength of concrete,
vield stress of steel (ksi):

B =the ratio of the depth of stressed
block in the compression zone to
the distance between the outside
compression surface and the neutral
axis (here, according to Ref [ 1],
=(.85).

It is assumed in Ref [8] that conditions g,<

0 and g,>0 hold for light- and over-reinforce-
ment, respectively. Otherwise (ie., if g, =0
and g,0<) the beam is moderately reinforced.

In Ref {8] the limit state functions for hight

ly, moderately and over-reinforced beams are,

respectively, as follows:

£,=By(1.25b,h% 1) —M (3)
A,
=BAf, (d————)~M (1)
BeBALUET T
g=B(+h,d’L) —M (5)

Here
B=factor characterizing flexural model un-
certainty.
M =external bending moment,
For generality let us divide both sides of eqn
(2) by b,d and both sides of eqns. (3), (4),

(5) by b.d% Then

X 73 3% 19956.
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B T 000+, (6)

g, =B(1.65/ £ ) ~M: )
: . iy

g =Bpf,(1———=) - M' (8)
TS

g=B, () - M’ )

Here p=A,/(b,d) is reinforcement ratio and
superscript r stands for relative values of limit
state functions and external moments. For the
sake of definiteness it 15 assumed in eqns (3).
(7) that h=-1.15d.

As was mentioned above, in Ref | 8] condi-
tions g, <0 and g.>0 are used to distinguish
between the cases of light and over-reinforce
ment, respectively. Below we shall employ a
similar condition g4>(0 for over reinforcement,
To distinguish the light reinforcement another
criterion instead of the condition g;<<0 will be
used. The beam s lightly reinforced if its
uncracked strength is greater than cracked
strength. Therefore the condition g\>g}, or
Pl

165 > pf (1~
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holds for lightly reinforced beams.

Six random variables were considered in the
course of rehiability analysis: yield strength of
steel f,, compressive strength of concrete f,
measure of concrete sphtting strength \;‘ flex
wral model uncertainty Bi external moments MY
and M&, produced by dead and live loads, respect-
wely(sing* stands for random values).

In all, ¥ cases were considered. For these
cases characteristics of random values f. and f’
are presented in Table 1.

For all cases flexural model uncertainty B; is

assumed normally distributed with mean value
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Table 1 Description of random variables f, and f.

Random values and their characteristics

3 5
Case

No | Distribu- Mean Lower | Upper Distribu- Mean
value, |c.o.v. |bound, | bound, value, |c.o.v.

o g kil ki | " ] ke
! beta 433 101071 33 62 normal | 3.125 | 0.18
2 beta L0 10.093 0 o 102 normal | 3125 | 0.18
3 normal ‘ 23 012 - =~ |lognormal | 1.9 | 0.19
4 | vomal : 23 012 | - | - |logoormal | 219 | 019
5 normal | 42.3 | 0.12 - ~ | lognormal | 240 | 019
6 normal | 619 | 0.10 - = |lognormal | 1.9 | 0.19
7 normal | 61.9 1010 | - - !lognormal | 2.1% | 019
8 | nomal | 6L9 | 000 | - | - |lognormal | 240 | 0.19

1.1, c.0.v.=0.12 [8]. The description of ran-

dom values y/ £/, M} and MY is given below.
Cases 1,2 are typical for American and Can-
adian practice: the 1mitial data are taken from
Ref [8]. Cases 3 to 8 are typical for Korean
practice: the initial data are taken from Ref
[9]. Concrete in cases 3 and 6; 4 and 7; 5 and
8 1s defined as poor, medium and good, re-
spectively. Mean values of concrete strengths

are 0.65 f., 0.73 f. and 0.8 f_ for poor, medium

and good concretes, respectively. Grade 40 and
60 reinforcing bars are nominally used in cases
1, 3, 4, 5and 2, 6, 7, 8, respectively. Nominal
strength of concrete 1s 3.0 ksi for all 8 cases.

3. Probability of brittle failure

In Ref [8] only moderately reinforced beams
with limit-state functions (4) are considered:
it 1s correctly reasoned that probabilities of lig-
ht- and over-reinforcement are very small.
However, the beam initially (deterministically)
designed as moderately reinforced can be actu-
ally lightly or over-reinforced. Let us estimate
the probabilities of these events for above 8
cases.

The beam is moderately reinforced if its re-
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inforcement ratio satisfies the following condi-

tions:
Prin =P = Proax (11)

where  prn=0.005: sy ="2pp=0.0278 for

£,—40 ksi:f.=3 ksi and pp,=—0.0033: pmz%pb
=0.016 for f,=60 ksi: f,=3 ksi. The balanced
reinforcement ratio p, is determined by the fol-

lowing formula:

io.ssﬁlf; 87000
f,  87000+f,

Py (12)

If material strengths are random values then
the balanced reinforcement ratio py, is a ran-
dom value too. Let us denote it by p;. Using
eqn (6) probabilities P{(p>p,)=P(gi>0) and

P(p>%p;:pmx*) have been determined.

Probability P(p>p;) is the probability that
the beam initially designed as moderately rein-
forced with reinforcement ratio satisfying con-
ditions (11) is actually over-reinforced. In

much the same way probability P(p>%p§,) 1S

the probability that the provisions of ACI Buil-
ding Code for moderately reinforced beams are

violated. Probabilities P(p>p}) and P(p>%

p») are determined for eleven ¢ values: =0,
1, 0.2, ---, 1. The ¢ values are associated with
the reinforcement ratio p in the following way :

~ Pumin
g LA (13)

Pmax ™ Pmin
Calculations were performed using three ap-
proaches:
1) Monte Carlo simulation with subsequent
approximation of the results by Pearson’s cur-
ves and numerical integration [10,11]; sample
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size was 5,000 (the description of this ap-
proach is given in more detail in section 4).

2) Crude Monte Carlo simulation with sam-
ple size 5,000.

3) Crude Monte Carlo simulation with sam-
ple size 15,000 (for some p values).

All results were in close agreement. They
are presented in Tables 2, 3.

As can be seen from Tables 2, 3, probabil-

ities P(p>pw) and Plp >-;1~pb) are very high for

high p values and gradually go down as the p
values decrease, To take an exarnple, in case 3

for ¢=1 probabilities P(p>pi) and P(p>

pp) are 0.8191 and 0.9756, respectively. The
probability of brittle failure is fairly high even
for relatively low p values: for example, P(p>
o) ranges from 0.0131(case 8) to (.1124(case 3)
for &=0.5, p=print0.5(prax = pmun).

The reason for this phenomenon is quite ap-
parent. Even for cases 1, 2 where the actual
strength of concrete 18 the highest the mean
value of concrete strength 3.125 ksi is rather
low: it is only slightly above f.=3.0 ksi; at the
same time ¢.0.v.={.180 is rather high. As a re-
sult the probability that concrete strength will
fall below f. is high (it equals 0.413). For cases
3 and 6 the situation is much worse: the mean
value of concrete strength is the lowest and
c.0.v.==(0.19 1s the highest. The probability
that concrete strength will fall below f. equals
0.99. From physical considerations as well as
from eqn (6) one can see that the probability
of over-reinforcement increases as concrete
strength decreases, In view of high probability
of low concrete strength values the probability

of over-reinforcement is high. For low & values
(¢<0.5) probabilities P(p>p} and P(p>%p;>

are lower in cases 5 and 8 than in cases 1 and

M7 3% 19956.

2, respectively.

This 15 associated with the distinctions in dis
tribution laws of concrete strength: due to pos
itive skewness of lognormal distribution ran-
dom realizations of concrete strength are gen-
erally higher in cases 5 and 8 than in cases 1
and 2, respectively, even with larger mean val-
ues of concrete strength in cases | and 2
2:3and6:4and 7: 5

and 8 (different f, but the same f’) one can

Comparing cases 1 and

see that more often than not the probability of
over-reinforcement for fixed & values decreas-
es with steel strength. At first glance this re
sult seems erroneous: the probability of over-
reinforcement should increase with steel stren-
gth. However, the result becomes evident if
reinforcement ratio p is taken into account. As
2= PrainHEProax

lue py<py, where py,

can be seen from formula (13),
~pmn). For a fixed & va
and p,, are p values for reinforcing bars of
grades 60 and 40, respectively. It 1s clear that
probability of over reinforcement decreases as
the reinforcement ratio decreases. From the
two tendencies-increase in steel strength and
decrease in reinforcement ratio-the latter exer-
ts more influence. Therefore the probability of
over reinforcement decreases with steel stren-

gth.

Table 2 Probability P(p> p1,)

m wmlu m"M
64 | 00186 mﬁ»iﬁ?iﬂ.mw it |
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Table 3 Probability P( ;> 5: o)

Case ¢

No | ww pei 23 [l es s [ w | L
0000 0008  .0008 00562 10,136 2805 [ 1.5263 6t 0 |72
2o o0 000,02 | 00512 0132 2151 0285 |50 | s |77
300000 | 008 | 00116 | 0085 | 02580 1 tsed 0811 | v 0o | e 5
0000 0000 008202960 L6 030 307 670 31 | oowe .
5| 0| 60 {0001 00120 067|188 0351|5765 0.8 | 317 |18
0000|008 00126 | 10855 02456 | B4 08772 0815 D 6Tt |9
o a7 |
s Lo o vtz | oous oaggt o157 e 050 | o s

On occasion, the increase in steel strength
exerts more influence than the decrease 1n re-

inforcement ratio. To take an example, for low
£ values (¢<0.4) probability P(p>%p{‘)

increases with steel strength (see Table 3).

To estimate the probability of light re-
inforcement a similar methodology was used.
In the course of Monte Carlo simulation con-
dition (10) was checked for p=p,,,. in all eight

cases (see Table 1). Three random variables

., v/ f., f, were taken into account. The distrib

utions for f. and f; are given in Table 1. The

random variable V/’f_; was assumod to be fully
correlated with f’. It turned out that the prob-
ability of light reinforcement was very close to
zero (less than 107Y). Therefore in what follow
s the probability of failure due to light re
inforcement will be neglected.

4. Reliability of beams

Since the probabilities of brittle failure due
to over-reinforcement in some cases are rather
high, two failure modes described by limit-stat-
e functions (8), (9) should be taken into ac-
count in the course of beam reliability analy

sis. So far, in most, for reliability analysis of
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RC beams FORM /SORM methods have been
used (e.g., see Ref [8]). The methods can
take into account only one limit-state function,
Therefore it is difficult, if not impossible, to
use them in the case of two himit-state func
tions. Below is given another approach. For all
8 cases live-to-dead load ratio i1s assumed to be
3.0.

The initial data for calculations were pre-
pared in the following way.

1. Specify reinforcement ratio p satisfying
conditions (11).

2. Determine the nominal relative moment

capacity of the beam M. Assume that the fac-
torized relative external moment M: equals ¢
Mi(¢ is a strength reduction {factor, ¢=0.9
[1]).

3. Take Mi{=M}/6.5; M5=3M], where M
and M} are unfactored moments produced by
dead and live loads, respectively. The coef
ficient 6.5 is easily obtained from two follow-

Ing equations:

L4M}+1.7M5 M My=3M} (14)

Here 1.4 and 1.7 are load factors for dead and
live loads, respectively.

4. According to Ref [8,9], assume that MJ,
M (for cases 1, 2) and 1.05 M. 1.038 Mi(for
cases 3 to 8) are mean values of the random
moments M{" and MY produced by dead and
live loads, respectively, Assume that My is nor
mally distributed with c.0.v.=0.10 and MY fits
a type | extreme value distribution with c.o.v,
—=().25 (cases 1,2) and with c.o.v.==0.24 (cases
3 to 8).

5. In egns. (8), (9) assume that M*=M{ +
MY, fy=f), £, Br=Bj =L, where f,, f.

B, I are random values.



All random variables exclusive of v/ f. are

assurmmed to be mutually statistically indepen-

dent. In Ref [8] /f" is introduced as an ad-
ditional statisticallv independent normally dis-
tributed basic variable: its mean value equals
the square root of the nominal compressive
strength, and c.o.v.=0.18. This definition was
used for cases 1, 2 (see Table 1), IFor cases 3
to 8 the definition seems to be inappropriate
because of rather low mean values of concrete

strength. To be on the safe side in cases 3to 8

the random value \“7{‘7 was assurnied to be fully
correlated with £
Perform calculations in the following order:
1. Using Monte Carlo simulation obtain a set
of realizations of random variables f,, £, Bj,

.

\T M/, M.

2. Check condition (6) to determine whether
the hearn is moderately or over-reinforced.

3. Choose the corresponding limit state func-
tion among (&), (9) and calculate its value g*.

4. Perform steps 1 to 3 m times. As a result
obtain m values gi.---, ¢,

5. Fit an appropriate Pearson’s curve v(z) to
describe probability densitv functions of g' val
ues,

6. Calculate the reliability of the beam R by
numerical integration:

R = ‘: y(z)dz (1

All calculations were performed with sample
size m==5,000 and for some cases were checked
by crude Monte Carlo simulation with sample
size 16,000, Reliabilities obtained by the two
methods were 1n close agreement. In addition
for each case calculations were also performed
using one fallure mode. corresponding to the
moderately reinforced beam and described by

failure function (8),

M7 H 3% 19956.

Calculation results are presented in Figs. |1
to 4. Here the reliabihty indices p are plotted
vs. <

Case 1 (the solid and dashed lines in Fig. 1)
will be our initial concern. The obtained res
ults are in complete agreement with the values
of probabilities F(p>p,..") discussed above.
As can be seen from the Figure, if two failure
modes are taken into account {(solid line), the
reliability index #=3, 20 remains unchanged for
0<&<0.7 because 1n this case for the most
part himut-state function (8) 1s used and it giv
es the highest g" values. As & incredses from
0.7 to 1, the probability P(p>p,..*) increases
as well (see Table 2). As a result in the course
of Monte Carlo simulation in increasing num-
ber of cases limit-state function (9) 1s used
and this function gives lower g' values in com
parison with limit-state function (8). For &=:1
(p=2p.¢) reliability index f# drops to 2.7.

Thus, reliability of beams 1s low if remforce-
ment ratio is high (p 18 close to py,.,). Under
this condition the moment capacity of the
beam 1s governed predommantly by concrete;
reinforcement does not contribute to the beam

moment capacity (see eqn (4)). Therefore the

pp—
3. :
|
2. Case 2 failure 1 fanure
! Nao mode: mode
: G e
! 2
a. .

0.1 0.2 0% 0.4 05 06 7 08 09 1(

Nad

Fig. 1 Flexural reliability index fi vs. relative relative re-
inforcement ratio Z, cases 1, 2
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2 failure 1 failure
[ No modes mode
3

01 02 03 04 05 06 07 08 0910
g

Fig. 2 Flexural reliability index § vs. relative relative re-
inforcement ratio &, cases 3, 6

p
4
|

Case 2 failure 1 failure L
No modes mode S

4
. .

0F 02 03 04 05 06 07 08 0910

Z

Fig. 3 Flexural reliability index f vs. relative relative re-
inforcement ratio &, cases 4,7

p
4

Case 2 failure 1 failure T~
No modes mode

01 02 03 04 05 06 05 08 05 10
Fig. 4 Flexural reliability index f vs. relative relative re-
inforcement ratio £, cases 5, 8
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reliability is low.

In case of low and average reinforcement rat
io (0<&<0.7, see Fig. 1) the beam is actually
moderately reinforced, 1.e., the probability of
over-reinforcement is small. Flexural strength
of such beam is governed by both materials -
concrete and steel (see eqn (8)). The material
s behave as though they support each other.

Assume, for example, that concrete strength
is low. Then if strength of reinforcement is suf-
ficiently high, the depth of concrete com-
pression zone increases and the beam can sup-
port the external moment with a reduced val-
ue of the arm of the internal couple. Similarly,
if strength of reinforcement is low, but stren-
gth of concrete is sufficiently high, the depth
of concrete compression zone decreases and
the beam can support the external moment
with a larger value of the arm of the internal
couple,

Maximum reliability index B=3.20 is the
same as reliability index obtained in 8] for
the same conditions. It also coincides with the
reliability index calculated taking into account
one failure mode (the dashed line in Fig. 1).
However, if only one failure mode is con-
sidered, the reliability index p=3.20 remains
constant on the whole interval 0<¢é<1. From
this it follows again that the failure mode re-
lated to over-reinforcement must not be neglec-
ted.

The shape of the graph in case 2 is similar
to that in case 1, but reliability in case 2 is hig
her.

The graphs in cases 3 to 8 (Figs. 2, 3, 4) dif
fer substantially in shape from those in cases
1, 2 (Fig. 1) and the reliability is lower. To
take an example, for =1 if two failure modes
are taken into account the f§ values range from
1.1 (case3) to 2.1 (case8). The distinctive fea-
ture of the graphs in cases 3 to 8 is that the
reliability decreases with & (in all cases) and

2aa|s8E =2



increases with concrete strength (compare cas-
es 3, 4, 5 as well as 6, 7, 8). This feature holds
irrespective of whether one or two failure mod-
es are taken into account, Let us discuss this
subject in more detail.

To clarify the heart of the matter let us com-
pare a decline in moment capacity of the beam-
s as concrete strength decreases for different
values of reinforcement ratio. Take a set of
random realizations f,, f., B;, M}, M} of basic
variables. Calculate the relative moment ca-
pacity of the beam M}, ML, for two reinforce
ment ratios p,, p,(p,<p,), respectively. Con-
sider a reduced value of concrete strength
k£ (0<k.<1). Calculate the relative moment

capacity of the beam M, M., taking the
same values of all parameters as for M!, ML,
excluding concrete strength that equals kf..

We shall investigate the sign of the difference

B El M{tii - ; .
D == (p1<py, 0<k <1} (16)
a Mg

We shall assume that only one failure mode
corresponding to moderate reinforcement 1s

taken into account, Substitute the values of

I, ML, M, MY, from egn (8) into (16):

¢l

oty pof,
Bipf,(1—————)  Bypf, (1 - ———
b= T P Tkt
b £, f
. mly | . Poly
By, f,(1— %) Bp.f, (1~ —L
P el (=)
(17)
Denote
- Lt (18)
fy
Then
Alp,—p{(1—k.)
D= —te A1 (19)

- kAA=p ) (A—py)

A 73 3% 19956.

Since A>0, A—p, >0, A—p,>0, p;<p, and
0<k.<1, then

D, >0 (20)

Thus, the relative decline in moment ca-
pacity increases with reinforcement ratio p dep-
ending on concrete strength: from eqn (19)
one can see that the lower concrete strength
drops (i.e., the lower k. value is taken) the
more the above increase is.

Random realizations of the external mo-
ments Mj, M5 do not depend on concrete stren-
gth. From eqn (8) one can conclude that limit-

state function g} decreases as concrete stren

gth reduces, i.e., the reliability decreases as
well.

In cases 1, 2 concrete strength 1s higher
than in cases 3 to 8. Therefore if one failure
mode is taken into account the reliability of
the beam remains constant irrespective of re-
inforcement ratio. In cases 3 to 8 concrete
strength is markedly less. Therefore reliability
decreases substantially with reinforcement rat-
10,

In much the same way as in case 1, if two
failure modes are taken into account in cases 3
to 8, then for low and average reinforcement
ratio (& is between 0 and 0.5-0.6) the reliability
is the same as for one failure mode (the beamn
18 actually moderately reinforced). As the re-
inforcement ratio increases the probability of
over-reinforcement increases as well. The mo-
ment capacity of over-reinforced beams is gov-
erned only by concrete, Since concrete stren-
gth is low, the morment capacity 1s low too. As
a result, the reliability decreases in comparison
with that obtained for one failure mode.

A decline in moment capacity of the beams
as steel strength decreases can be compared in

much the same fashion. Equation similar to
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eqn (17) takes the form

; plksf\f /)‘)k va
Bipkf.(1——) Bk f (1 - —
s 171, b = o )
b= i f
nly poly
Bep f, (1 ——+) Bpof (1 ———=
P, w1 =)
(21)
where 0<<k.<1. After some algebra:
Ak (p,=p ) {1—k,)
LA < (22)

(A—p (A—p,)

Thus, the relative decline in moment ca-
pacity decreases with reinforcement ratio p
depending on steel strength: the lower the
steel strength drops, the more the above de-
crease 1s,

From this it follows that two tendencies exis-
t: as reinforcement ratio increases the de-
crease In concrete or steel strength results in
lower or higher reliability, respectively, Mut-
ual arrangement of the graphs in Figs, 1 to 4 is
attributable to this fact: the decrease in steel
strength (cases 1, 3, 4. 5 In comparison with
cases 2, 6, 7, 8, respectively) can result in in
crease or decrease in reliability depending on
which tendency prevails for different re
inforcement ratios p.

Figs. 1 to 4 indicate that reliability of the
beams designed under the provisions of ACI
Building Code i1s non uniform and inadequate
for p values close to p,,... The reliability is par-
ticularly low in cases typical for Korean prac-
tice because of low concrete strength 19]. The

problem arises how to remedy the situation.
5. Recommendations
In authors’ opinion, matters can be straig-

htened out by the tollowing measures.

As was mentioned above, in case of over-re

172

inforcement the inadequate reliability arises
from the low strength of concrete, which in its
turn 1s directly related to the evaluation and
acceptance rules, Under the provisions of ACI
Building Code the concrete is considered ac-
ceptable if two criteria are met:

1) No single test strength shall be more than
500 psi below the specified compressive stren-
gth f..

2) The average of any three consecutive
test results must equal or exceed the specified
compressive strength, f..

The second criterion implies that the mini-
mum required average compressive strength of
concrete 1s equal to the specified compressive
strength, f.. Consider the concrete in a batch.
Assume that concrete strength is normally dis-
tributed with mean value f.. According to the
second criterion, the concrete is accepted. In
chis batch the probability P(f'>f.) that actual
concrete strength f. exceeds f. is very low and

equals 0.5. As was discussed above, in practice
this exceedance probability is even lower; it is
particularly low in cases typical for Korean
practice (9],

Several years ago similar drawbacks in the
Russian Code for RC structures design came to
light [10]. To remedy the situation it was de-
cided to change the definitions of character-
istic and design strengths of concrete. Pre-
viously characteristic strength B, was speci-
tied with exceedance probahility (.95, Design
strength R, was defined as the ratio Rg==B, /

~.. where . 1s a partial safety factor (y.>1).
To get rid of the cases with inadequate re-
hability additional requirements on character-
istic B, and design R, strengths of concrete
were imposed: probability that concrete stren-

gth exceeds B, and R, should be not less than

EEI=E T



0.95 and 0.9986, respectively, with partial saf-
ety factor y. being unchanged. Then the con
trol procedures in the State Standard GOST
18105-86 “Concrete, Rules for Acceptance Con-

”

trol” were changed to meet these require-
ments. This procedure is described 1n detail in
Ref [12,13].

It is appropriate to consider a possibility to
apply a similar approach to ACl Code 318-89.
Specified compressive strength of concrete f,
can be defined with a certain exceedance prob-
ability. Then the rules for acceptance control
of concrete can be changed in such a way as to
satisfy this definition, In this case the mini-
mum average required compressive strength of
concrete will, of course, exceed f,.

By these means the cases with Inadequate
rehiability are eliminated. However, excessive
reliability can appear in some cases {(e.g., for
0=¢<0.7, see Fig. 1, case 1). In such an event
a material combination factor car he introd-
uced to regulate reliability [10].

The material combination factor is an ad-
ditional partial safety factor. It i1s similar to
load factors. It takes into account low probabil
ities of simultaneously low values of strength
of several materials, when the materials be-
have as if they support each other. By com-
parison, load factors take into account low
probabilities of simultaneously high values of
several loads. With the material combination
factor a unuform reliability can be achieved.

This approach can be applied not only to
beams, but to other structures as well.

6. Conclusion

From the above discussion the following con-
clusions related to flexural strength of RC
beams can be drawn,
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1. Reliability of RC beams designed under
the provisions of the ACI Building Code 1s
non-uniform and changes substantially with re-
inforcement ratio p, The lowest values of re-
liability occur for beams with p values close to
3
1 1

2. For the above case the probahility of brit-
tle failure is rather high (up to 0.42).

3. In cases typical for Korean practice | 9]
the reliahility 1s particularly low (reliability in-
dex B can go down to 1.1) and the probability
of brittle failure is particularly high (up to 0.
82).

4. In the course of reliability analyses of RC
beams two failure modes, corresponding to
moderate and over-reinforcement should be
taken into account,

5. In investigated cases the probability of
brittle falure due to light reinforcement is
very low and can be neglected.

6. To decrease the probability of brittle fail-
ure due to over-reinforcement the rules for ac-
ceptance control of concrete can be changed.

7. To achieve a uniform reliability a material

combination factor can be used.
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