A Solution for Order Relation Problems
in Multiple Indicator Kriging
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Abstract

Embracing a suggestion by Sullivan(1984} and minimizing the sum of the estimation
variances at all thresholds, a rigorous solution to order relation problems in multiple indi-
cator kriging is formulated. By utilizing the particular structure of the resulting
optimization problem, a sclution algorithm is developed that requires little computational
effort beyond the initial indicator kriging. Thus, this proposed solution is computationally
efficient, mathematically consistent, and based upon an explicit statistical foundation —un-

like many of the ad hoc solutions currently in use.

1. Introduction

Multiple indicator kriging{MIK) uses indicator data and provides estimates of spatial
distributions without assuming any particular form of the underlying distribution
(Sullivan, 1984 : Journel, 1983, 1984),

For multiple indicator kriging, in practice, a common variability interval{[x, f]) is
discretized by NT increasing thresholds :
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7o k=1,2,--,NT with a<z, <z, < <z7<f (1

NT indicator kriging estimates are calculated by solving the corresponding NT linear in-
dicator kriging systems and the posterior cumulative density function{ecdf} can be
approximated by the NT indicator kriging estimates. In other words, the result of multiple
indicator kriging is a probability column F{z|n known samples) and can be used as a
mode! for the uncertainty about the unknown value for the volume V(Journel, 1986).

The application of multiple indicator kriging can be found in many papers(Carr et al,
1986 : Knudsen et al., 1984, Johnson et al.,, 1989, Alli et al., 1990, etec.). In practice, however,
inadmissible estimates may occur, these are called order relation problems(Solow, 1986,
Limic et al, 1984, Journel, 1982, 1983, 1986, lsaaks and Srivastava, 1989, p.447 —448;
Sullivan, 1984, ete.).

Two conditions must be satisfied for a valid estimate. First, the estimated proportion
below any threshold cannot be less than (} or greater than 1. Second, the estimated pro-
pertion below one threshold cannot be greater than the estimated proportion below higher
threshold. From these two conditions, the order relation constraints can be written as
follows :

GeFlz)<F(z) < < Flzyw) <l (2)
where NT is the number of thresholds,
7o k=1, 2, -, NT, 1s the k-th threshold value, and
F(z,) is the indicator kriging estimate at the k-th threshold.

One way of meeting the first constraint is to use weighted linear combinations of the in-
dicator data in which all of the weights are non-negative. Forcing all weights to be non-
negative is a sufficient, but not necessary, condition for ensuring that all kriged estimates
are positive(Journel 1986}, Also one way of satisfying the second constraint is to use only
non-negative weights that sum up to 1, and to use the same weights for the estimation at
all thresholds(Isaaks and Srivastava, 1989, pp.447 —448).

When order relation problems occur, a very simple but inexpensive method to evaluate
them is to smooth the indicator kriging estimates by rounding to the nearest admissible
values{Solow, 1986).

Fwo feasible methods to cope with order relation problems in multiple indicator kriging
were proposed by Sullivan(1984). One method is to combine simpie kriging systems for all
thresholds into one giant system and minimize the sum of estimation variances. The funda-
mental drawback of this method is that the system of equations would be very large, hence
the solution would be computationally expensive. The second method is to use the results
given by the indicator kriging algorithm and fit a distribution from the optimal indicator
kriging solution. For example, minimizing the sum of the squared deviation from the indi-
cator kriging solution can be used for a fitting criterion.

In this paper, an alternate method of solving the order relation problems in multiple in-
dicator kriging is described and the details of a computationally efficient algoritbm are
presented. The method embraces Sullivan’s idea(1984) of minimizing the sum of the esti-
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mation variances at all thresholds{the total variance), but does so with little additional ef-
fort beyond the standard indicator kriging. Furthermore, for this presentation, ordinary in-
dicator kriging is used, but simple indicator kriging can also be used by applying the same
method.

2. Problem formulation

The ordinary kriging estimate for a volume V using n neighboring samples can be
obtained by minimizing the associated estimation variance subject to the global
unbiasedness constraint(Isaaks and Srivastava, 1989, p.279-~284) :

i = Z']‘W
such that

Minimize o, =av +w' Aw — 2h"w,
w

subject to  1'w=1,
where z is the estimated value of volume V,
z is the {nxl) vector of measured values, the superscript "T" indicates a vector
transposc,
w is the (nx1) vector of weights to be determined,
o 18 the estimation variance for volume V using the n samples,

ay 18 the dispersion variance of the volume V,

A is the (nxn) matrix of sample to-sample covariances,

b is the (nxl) vector of covariances between the n samples and the volume V,
and

1 is the (nxl) vector of ones.

As for the ordinary kriging estimate, NT ordinary IK estimates for a volume V using n
neighboring samples can be obtained at NT different thresholds :
F(z)=i(z)w(z), k=12, -, NT, (3)
such that
Minimize ap = oilz,) +w (2, )A(z)w(z,) —2b"(z,)w(z,)
w(z,)
subject to U'wiz) =1,
where NT is the number of thresholds,
z, i1s the k-th threshold value,
F(z) is the ordinary IK estimate of the volume V at threshold k,
i{z,) is the {(nx]) vector of known indicator data at threshold k,
w(z.) 1is the (nxl) vector of unknown weights at threshold k.
o:(z) is the estimation variance for the volume using the n samples at threshold k,
me(z,) is the dispersion variance of the volume at threshold k,

A{z,} is the {nxn) matrix of sample-to-sample covariances at threshold k,
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b(z,) is the {nxl) vector of covariances between the n samples and the volume at
threshold k, and
I is the (nxl) vector of ones.

In general, however, indicator kriging estimates violate the order relation constraints
{Equation 2} and hence the indicator kriging estimates can not be directly used as a pos-
terior cumulative distribution F(z | n known samples).

Consider an extension of the indicator kriging problem where, in addition to the global
unbiasedness condition, the algorithm is further constrained to satisfy the order relation
constraints(Equation 2} at all threshoids. The different thresholds are further coupled in
the multiple indicator kriging objective function by minimizing the sum of the estimation
variances for all thresholds. This extended problem can be formalized by the followings con-

strained optimization problem :

b3

B

Minimize ;l [at(z)+w (z)A(z) wlz) —2b"(z)w(z,)], {4a)
wiz,), - wiz)
subject to
0 < i(z)w(z),
izdwiz,) < i"(zu)w(zn), k=12, -, NT—1,
i'"{zar)w(zvr) < 1, and {4b)

wiz,) 1, k=1,2, -+, NT
Note that there are NT equality constraints and NT-+1 inequality constraints in
Equation 4b,

3. Probiem soiution

As in traditional optimization problems with constraints, the indicator kriging weights
satisfying order relation constraints are uniquely determined by the Kuhn-Tucker

conditions from classical optimization theory(e.g. Luenberger, 1973, p.233) :

Alz)w(z) +ut — (4 — 4 dilz) =blz) (5a)

I'wiz,) =1, and {5b)
A0=i"(z)w(z)] =0

A i (z)wiz) | =i (20 Owlze ) =0, k=1, 2, -, NT—1 (5¢)

)LNT‘l[i‘[‘(ZN'I‘)“"(ZNT) _1J =0, and
Di(z)wiz) i (z)wiz) < - < (N(zw)wlzw) <1
where p, k=1, 2, -, NT, are NT Lagrange multipliers associated with the global
unbiasedness constraints, and
iy k=1, 2, -+, NT+1, are NT+1 Lagrange multipliers for inequality constraints
Equation He shows that the indicator kriging estimate at a threshold is bounded by the
two indicator kriging estimates at two neighboring thresholds which can be considered as a
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lower and a upper bound : if k is 1, 0<F(z)) <F(z), if 2<k<NT—1, F(z, }<F(z,)<F
(Zey, or if k is NT, F(zwwra<F(zy) =<1, These two bounds, however, may have to be
updated themselves to satisfy the associated neighboring local order relation constraints. If
the ordinary IK estimates violate any local order relation constraint, therefore, it should
be solved globally rather than locally, for example, when F(z,) is greater than F(z..),
simply making F(z,) be equal to F(z.,) is not always appropriate.

On the other hand, if the order relation constraints are satisfied globally, all of the A's
will be zero from Equation 5¢ and the ordinary IK estimates do not have to be updated.
Thus, if the ordinary [K estimates satisfy the order relation constraints globally, they are
also the optimal selutions for the extended problem.

By eliminating w(z,) in Equation 5a and Equation 5b, the following g is obtained :

e =c (A=A F+di, (6)
where ¢, = 1"A '(z)i(z,) /1"A (2, )1, and
do=[1"A(z)b(z) —1} /1"A ()1, k=1,2,--- NT.
Substituting Equation 5a and 5 into Equation be, the following system of equations is
established :
+é a4, — &A= 0—-F(z),
— &M (Gt D i~ iy = Flz) =Flz), k=1, 2, -+, NT—1 (7)
AENT/{NT_FfNTH Anrer = Flzy) —1,

where &, = i"(z, A (z)i(z,) —[1"A (2)i{z) I’/ 1"A (21, i=1, 2, ---, NT,
Aiy A o0, and Ayry, are {NT+1) Lagrange multipliers, and
F(z), k=1, 2, -, NT, are ordinary IK estimates before considering order relation

problems.

In a matrix form, Equation 7 becomes

& g 0 0 0] ¢] A
=& (&T8) —& 0 0 0 Ay
0 —& (f“+5i) — & 0 Az
O “f,\n'—q (é.\lT 1+fm‘) —fm‘ fLNT
L €] 0] 0 _fNT *ENT — L ;‘«NTH - (8)
()_F(Z1)
F(z])_F(Zz)

F(Zz) _F(ZJ)
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F{znr-1) —F(zxr)
F(zy) —1

Note that the ccefficient matrix in Equation 8 is a tridiagonal matrix. The system can
be readily solved by several methods, such as a Gaussian elimination method or
Gauss—Seidel iteration scheme. However, these methods are not the most efficient for
tridiagonal systems of equations. Rather, the solution can be expressed very concisely and
it requires but 3(NT-+1) steps {e.g., Carnahan et al., 1969, p.441~442}. In brief, the com-
plete algorithm for the sclution of the above tridiagonal system(Equation 8) is given by

ANTH = VTt (Qa)
A=t 5“;*” , k=NT, NT—1, ---,1, (9b)
k
where the s w2 are determined from the recursive formulas
e F2) (10a)
I{)L’f cw Vi = ﬁl * 3
L & o _
b= (& HE)— 8 s k=23, -, NT, (1Oh)
k-1
é‘i
;BNTM = éNT*T:‘: ’ (10(:)
Flz, }Y—F(z)+35 v =2 3 .o NT )
b = Z; {z L » k=2, 3, -+, NT, (10d)
B
Flzy) —1+&y
VNT+I = - C\H‘VNT " (109)
ﬁm‘ﬂ

The difficulty to solve the system of equations is that the unknown values of 4, A, -, A
nr+1 Should be guaranteed to be zeros when the corresponding local order relation
constraints are satisfied. In other words, if F(z,) is less than F(z.:,) in Equation 8, the
system of equations should be established in such a way that A, is ensured to be zero.
From Equation 8a and 8b, both v, and &4,/ B, should be zeros to ensure i, to be zero.
From Equation 10a, 10d, and 10e, it can be seen that v, becomes zero when fi, becomes
large. Also, &2, n/ B becomes zero when ., becomes large. Therefore, a system of (NTH+1)
linear equations can be established to ensure A, to be zero by setting B, equal to an infin-
ity.

Once Ay, As ++, and Aur., are obtained, new weights satisfying local order relation con-
straint, w*(z,), k=1, 2, ---, NT, can be computed by using Equation 5a and Equation 6.
Therefore, new multiple IK estimates satisfying local order relation constraint, F*{(z), can
be obtained as follows :

Fr=i(z)w*(2,) (11)
=F(z)+ (A —As) &n k=1, 2, -+, NT,
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where F{z,) = i'(z)w(z), k=1, 2, ---, NT.

For general order relation problems, however, multiple cycles of calculation(Equation 8
and Equation 11) might be required before the order relation constraints are globally satis-
fied. Note that once &, k=1, 2, ---, NT, are calculated, their values remain same during any
cycle because they are the function of A{z) and i(z,) which are given by the configuration
of samples. Therefore, only F(z,) are needed to be updated during each cycle.

The following pscudo-code, which is based on the algorithm for general tridiagonal
systems of equations given by Press et al. (1989, p.40), can be used for solving order re-
lation problems in ordinary IK. Note that the algorithm will fail when 8 equals zero. How-
ever, f§ is the function of ¢’s which are non-zero values. The algorithm fails only when the
coefficient matrix becomes singular: eg., if the same threshold value is used more than
once in IK, the coefficient matrix may become singular. In most cases, however, the coef-

ficient matrix becomes non-singular.

Algorithm for the order relation probiems in ordinary IK

do k =1, the number of thresholds(NT)
Calculate ordinary 1K estimate, F(z,)
Calculate &,

enddo

do while{any local order relalion constraint is violated}
if(0=<F(z)) then

=0
else
=23
endif
A= —F(z /By
do k=2, NT Decomposition and forward substitution
b &/ B
if(F(z.,) <F(z))then
p=x
else

f)’:(t:k FEITE Sy,
endif
if(i=0) pause Algorithm fatls
A= (Flz. )~ Flz)+& 24 ) /B
enddo

YNT+ = 7‘§NT/.B
if(F(zxr) < 1.0) ythen
p=x
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else
.B= ém'l""frw‘ VNTH1

endif
if(#=0) pause Algorithm fails
A =(F(zur) — 1-O+CN1" Anr) / ,B
dok=NT,1, —1 Backiward substitution
Ao = AT Vi Ay
enddo
do k=1, NT
Update F(z,) using Equation 11
enddo
enddo
stop
end
4. An Example

Congider that seven boreholes are available from a tunnel site of interest which is
discretized into 25(5x5) grid points. These boreholes will be used to characterize the geo-
logic conditions according to the RMR classification scheme {Bientawski, 1984, p.112~120}.
Table 1 gives the measured RMR values and locations{x and y coordinates). In general
RMR values fall between 0 and 100. For indicator kriging analysis, five equally spaced
thresholds(THI1, THZ2, TH3, TH4, and TH5) between 0 and 100 are used: the correspond-
ing RMR values are 16,67, 33.33, 50.00, 66.67, and 83.33 respectively. The same spherical
variogram model (sill 10, nugget 0, and range 500) was inferred from the available infor-
mation for five thresholds.

The ordinary IK estimates before and after performing order relation correction are
shown at several locations in Table 2. Note that values on the first and second row at each
point are the ordinary TK estimates before and after solving the order relation problems

respectively.
Table 1 Sample locations and RMR values.
X v RMR value
0400 1+00 33.00
1400 3+00 58.00
2400 0400 500
2400 2+00 70.00
3400 1400 42.00
3+00 3+00 83.00
4400 2+00 90.00
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Table 2 Ordinary IK estimates before and after solving order relation problems.

[ indicator kriged values at each threshold
¥ Y TH]1 TH2 TH3 TH4 TH5
0400 0400 30870 1.04203 98175 Y5806 94504
30470 98615 98615 U865 98615
0-+00 1400 00000 1.00000 1.00000 1.00000 1.000G0
00000 1.00000 1.00000 L.Ooooo 1.00000
0+00 3400 00045 29206 28560 1.03643 54125
00045 .28938 28338 97566 87566
1400 1400 26715 73084 76266 81168 1.04721
26715 73089 76266 81168 1.00000
3400 0+00 52365 50826 99222 1.02457 80473
h1612 Slel2 96251 96251 56251
3-+00 2-+00 —(.3115 -~0.5930 21902 18661 74921
00000 00000 20521 20521 74921
4400 0400 20551 32039 80687 89494 66877
29551 32039 76857 76897 76897
1
049 %
0.8 g N
% 0.7 /f
Eos
g 0.5
04
03 [=—before =~ after
0.2
0.1
0
0 20 40 60 80 100
Threshold
Figure 1 Cumulative density functions approximated by IK estimates before

and after solving order relation problems.

Figure 1 shows the cumulative density functions approximated by IK estimates before
and after solving order relation problems at location{4-00, 0-+00).

5. Conclusions
By minimizing the total estimation variance (i.e. the sum of the estimation variances

for all thresholds), a unique, defensible, solution for the order relation problem of multiple
indicator kriging is proposed. If the standard multiple indicator kriging estimates satisfy
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all order relation constraints, they are also the optimal solution for the order relation

problem. If the multiple indicator kriging estimates viclate any order relation constraint,

then the optimal solution can be obtained by establishing and solving a system of linear

equations whose coefficient matrix is tridiagonal. If NT different thresholds are used, the

size of the system to be solved is NT+1. The solution can be coded very concisely and it

requires some 3(NT+1) steps{Carnahan et al, 1969, p.441~442). Also, a small number of

iterations of calculation is enough to converge to the optimal global kriging estimates. This

algerithm is, therefore, not an expensive one.
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