Abstract
For the same configuration of two-dimensional finite element models, 6-node element exhibits stiffer bending stiffness than 8-node element. This is true in the relation between 16-node element and 20-node element for three-dimensional model. This stiffening phenomenon comes from the elimination of several mid nodes from full-node elements. Therefore, this may be called 'relative stiffness stiffening phenomenon'. It seems that there are a couple of ways to correct the stiffening effect, however, we could find only one effective method-the method of modification of Gauss sampling points-which passes the patch test and does not alter other kinds of stiffness, such as extensional stiffness. The quantity of modification is a function of Poisson's ratios of the constituent materials. We could obtain two modification equations, one for plane stress case and the other for plane strain case. This method can be extended to 3-dimensional solid elements. Except the exact plane strain cases, most 3-dimensional plates could be modeled successfully with 16-node element modified by the equation for the plane stress case. The effectiveness of the modification method is checked by applying it to several examples with excellent improvements. In numerical examples, beams with various boundary conditions are subjected to static and time-dependent loads. Free and forced motion analyses of beams and plates are also tested. The beam and plate may be composed of isotropic multilayers as well as a single layer.
2차원 유한요소 모델의 동일한 형상과 하중 조건에 있어서 6절점 요소의 굽힘 강성은 8절점 요소의 굽힘 강성보다 더 크게 나타난다. 이와 같은 현상은 3차원 16절점 요소와 20절점 요소에서도 나타나며, 완전 요소의 중간 절점들을 제거하므로 인하여 나타난다. 따라서 이 현상을 상대적 강성강화 현상이라 할 수 있다. 강성강화 현상을 보정하기 위한 매우 효과적인 방법으로 가우스 적분점 수정법을 도출하였으며, 이 방법은 확장적인 강성과 같이 다른 종류의 강성을 변화시키지 않으며, 또한 패취시험을 통과하였다. 적분점 수정량은 재료의 포아송비의 함수로 나타나며, 2차원 평면응력 상태와 평면변형율 상태에 대한 두개의 수정식을 구하였고, 또한 3차원 고체요소에 대하여 확장하였다. 가우스 적분점 수정법의 효과를 검증하기 위하여 보와 판의 자유 및 강제운동 문제를 해석하였으며, 등방성 적층 보와 판에 대해서도 단층보와 단층판과 같은 방법으로 적용하여 그 효율성을 입증하였다.