Abstract
Two-element plate concept is incorporated into the buckling problem in order to simplify the nonlinear distribution of stress through the thickness of plate. Finite element formulations and programs based upon the Reissner functional and the modified Reissner functional using two-element plate concept are developed for buckling analysis of plates under axial compression. The two programs have been applied to obtain the linear elastic buckling behavior of axially compressed flat plates. Excellent agreement of linear elastic-solution results with exact or approximate solutions of other authors for the same boundary conditions proves the validity of the finite element method using two-element plate theory.
본 논문에서는 평판 두께 방향의 선형 및 비선형 응력 분포를 일정한 크기의 단순응력 상태로 가정하는 분할판(Two-element plate) 개념을 이용하여 비선형 특성을 나타내는 평판의 강도해석을 할 수 있는 Reissner 범함수와, 재질 특성은 선형이면서 기하학적 비선형 특성만을 갖는 평판의 강도해석을 할 수 있는 변형 Reissner 범함수를 모델링하였다. 두 종류의 Reissner 범함수들을 근거로 하여 축방향 하중을 받는 평판의 선형 좌굴과 좌굴후의 비선형 특성 및 최대강도들을 계산할 수 있는 유한요소 방정식과 프로그램 개발을 시도하였다. 개발한 프로그램을 이용한 수치해석 결과, 분할판 이론을 사용한 선형좌굴해석 결과가 기존의 평판이론을 사용한 선형좌굴해석 결과와 유사항 경향을 나타냄으로써 분할판 이론에 근거한 유한요소법을 하중과 경계조건 및 구성재질이 다양한 일반적인 평판의 강도해석에 확대 적용함은 물론 좌굴후 비선형재질 특성으로 인한 평판의 최대강도도 예측 가능하다고 생각한다.