Abstract
The present study is concerned with the hydrostatic extrusion process for the copper-clad aluminum rod through metallurgical joining. The rigid viscoplastic finite element analyses are performed for the steady state extrusion process of the bimetal rod. An algorithm for finding the interface profile of the bimetal rod by tracking a particle path in Eulerian domain is presented. The distributions of the effective strain rate, equivalent stress and hardness are examined for the several extrusion ratios. Experiments are also carried out for the copper-clad aluminum rod at room temperature. It is found out that the finite element predictions are generally in good agreement with the experimental observations. The detail comparisons of the extrusion loads predicted by the element method with those by experiments are given.