정지상태의 비뉴튼 점탄성유체중을 자유낙하하는 원통형 섬유의 운동특성(II) -낙하특성에 미치는 초기회전각, 유체 유동특성 및 섬유 밀도의 영향-

Motion of a Cylindrical Fiber Falling in Stationary Non-Newtonian Viscoelastic Fluids(II) - influence of Initial Angle, fluid Flow Property, and Fiber Densify on the Falling Behavior-

  • 송기원 (부산대학교 공과대학 섬유공학과) ;
  • 김태헌 (부산대학교 공과대학 섬유공학과)
  • 발행 : 1995.09.01

초록

In order to clarify the influence of various factors on the motion of a fiber in non-Newtonian viscoelastic fluids, the free frilling behavior of a cylindrical slender body has been experimentally investigated in stationary polymer solutions. In this paper, experimental results on the effects of initial angle, fluid flow property, and body density on the frilling trajectory, horizontal and vertical velocities, and variation of attitude off slender body were reported in detail. Furthermore, the hydrodynamic mechanism of the results was discussed by considering the rheological properties of polymer solutions and introducing a quid boundary layer theory. Main findings obtained firm this study can be summarized as follows (1) The initial angle inonces the flee frilling behavior of a slender body only in the small region where the body starts its motion. Beyond this region the motion of a body is independent of the initial use. (2) Both the horizontal and vertical velocities of a body become smaller for the more concentrated polymer solutions. In addition, the final orientation angle of a body becomes closer to vertical direction as the solution concentration increases. (3) With increasing the body density, translational velocities of a body become larger but the final orientation an인e remains unchanged. (4) Falling behavior of a slender body can be inteivreted by a new mechanism introducing the competition between inertia and viscoelastic effects as well as a supercritical flow theory around a body.

키워드

참고문헌

  1. Polym. Eng. Sci. v.17 S.Onogi;Y.Mikami;T.Matsumoto
  2. Trans. Soc. Rheol. v.21 R.O.Maschmeyer;C.T.Hill
  3. Trans. Soc. Rheol. v.21 R.O.Maschmeyer;C.T.Hill
  4. J. Rheol. v.22 Y.Chan;J.L.White;Y.Oyanagi
  5. Rheol. Acta v.19 T.Kitano;T.Kataoka
  6. Rheol. Acta v.19 T.Kitano;T.Kataoka;T.Nishimura;T.Sakai
  7. Rheol. Acta v.20 T.Kitano;T.Kataoka;T.Shirota
  8. Rheol. Acta v.20 T.Kitano;T.Kataoka
  9. Rheol. Acta v.20 T.Kitano;T.Kataoka
  10. Rheol. Acta v.23 T.Kitano;T.Kataoka;Y.Nagatsuka
  11. J. Rheol. v.29 A.B.Metzner
  12. J. Rheol. v.30 E.Ganani;R.L.Powell
  13. J. Rheol. v.36 G.Ausias;J.F.Agassant;M.Vincent;P.G.Lafleur;P.A.Lavoie;P.J.Carreau
  14. J. Fluid Mech. v.44 R.G.Cox
  15. J. Fluid Mech. v.69 L.G.Leal
  16. J. Fluid Mech. v.82 P.Brunn
  17. J. Non-Newt. Fluid Mech. v.45 K.Cho;Y.I.Cho;N.A.Park
  18. J. Non-Newt. Fluid Mech. v.54 D.D.Joseph;Y.J.Liu;M.Poletto;J.Feng
  19. J. Fluid Mech. v.42 D.F.James;A.J.Acosta
  20. J. Non-Newt. Fluid Mech. v.38 L.E.Fraenkel
  21. J. Non-Newt. Fluid Mech. v.7 A.Koniuta;P.M.Adler;J.M.Piau
  22. J. Non-Newt. Fluid Mech. v.37 V.Delvaux;M.J.Crochet
  23. J. Non-Newt. Fluid Mech. v.37 H.H.Hu;D.D.Joseph
  24. J. Korean Fiber Soc. v.32 K.W.Song;T.H.Kim
  25. Principles of Non-Newtonian Fluid Mechanics G.Astarita;G.Marrucci
  26. J. Fluid Mech. v.253 Y.J.Liu;D.D.Joseph
  27. unpublished data K.W.Song;T.H.Kim