Motion of a Cylindrical Fiber Falling in Stationary Non-Newtonian Viscoelastic Fluids(I) -Falling Behavior in Polymeric Fluids-

정지상태의 비뉴튼 점탄성유체중을 자유낙하하는 원통형 섬유의 운동특성(I) -고분자 유체중에서의 낙하거동-

  • 송기원 (부산대학교 공과대학 섬유공학과) ;
  • 김태헌 (부산대학교 공과대학 섬유공학과)
  • Published : 1995.07.01

Abstract

As a simplified model for the motion of fibers in polymeric fluids, we investigated experimentally the file falling behavior of a cylindrical slender body in stationary polymer solutions by the use of multi-stroboscopic photographing technique and developed a new analysis method to evaluate the actual falling characteristics of a body. Main findings obtained from this study can be summarized as follows : (1) A slender body falling in polymer solutions rotates its attitude into vertical direction and moves translationally maintaining a constant inclination angle (final orientation angle or steady angle). (2) Both the horizontal and vertical velocities of a body become larger in the more dilute polymer solutions. (3) The larger the concentration of the solutions, the smaller inclination angle at which the maximum angular velocity takes place. (4) The final orientation angle of a body becomes smarter as the solution concentration is increased. (5) A new mechanism combining the shea-thinning and elastic properties of non-Newtonian viscoelastic fluids as well as a supercritical flow theory around a body can be used to interpret the reason for our findings.

Keywords

References

  1. Proc. Royal Soc. v.A102 G.B.Jeffery
  2. Plastic and Rubber v.6 F.J.Lockett
  3. J. Comp. Mat. v.17 R.C.Givler;M.J.Crochet;R.B.Pipes
  4. J. Non-Newt. Fluid Mech. v.13 J.D.Goddard;Y.H.Huang
  5. 纖維機械學會誌(日本) v.33 堀川 明;千葉訓司;西谷憲三;上島 徹
  6. 纖維機械學會誌(日本) v.34 堀川 明;千葉訓司;西谷憲三;上島 徹
  7. J. Reinf. Plast. Comp. v.3 F.Folgar;C.L.Tucker
  8. J. Comp. Mat. v.20 W.C.Jackson;S.G.Advani;C.L.Tucker
  9. J. Fluid Mech. v.41 G.K.Batchelor
  10. J. Rheol. v.28 S.M.Dinh;R.C.Armstrong
  11. J. Rheol. v.29 M.A.Bibbo;S.M.Dinh;R.C.Armstrong
  12. J. Non-Newt. Fluid Mech. v.26 G.G.Lipscomb;M.M.Denn;D.U.Hur;D.V.Boger
  13. J. Non-Newt. Fluid Mech. v.35 K.Chiba;K.Nakamura;D.V.Boger
  14. J. Fluid Mech. v.271 P.Y.Huang;J.Feng;D.D.Joseph
  15. Rheol. Acta. v.25 K.Chiba;K.W.Song;A.Horikawa
  16. J. Rheol. v.37 D.D.Joseph;Y.J.Liu
  17. AIChE J. v.13 R.A.Hermes;A.G.Fredrickson
  18. J. Non-Newt. Fluid Mech. v.38 L.E.Fraenkel
  19. Fluid Dynamics of Viscoelastic Liquids D.D.Joseph