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Multi-objective Scheduling with Stochastic Processing Times

Young Sik Jung*

Abstract

A multi-objective, single-stage scheduling problem with stochastic processing times is considered
where the objective is to simultaneously minimize the expected value and the variance of total
flowtime, and the mean probability of tardiness. in cases where processing times follow normal
distributions, a method using pairwise interchange )f two jobs(PITJ) is proposed to generate a set
of the approximate efficient schedules. The efficien- schedules are not dominated by the criterion
vectors of any other permutation schedules in the ieasible region. Numerical experiments performed

to ascertain the effectiveness of PITJ algorithm are also reported in the results.
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1. Introduction

While a lot of scheduling methods have been developed for optimizing various kinds of single
performance measures (see Conway et al. [4], Buker[1] and French[7]), we can not directly
apply them to multi-objective scheduling which s of relatively recent origin. Exploiting the
results obtaind for single-objective scheduling, most investigators on multi-objective scheduling
attempt to minimize a combination of total flowtime and some measures of tardiness. Some of
the earlier noteworthy studies are Smith[16], <mmons[5], [6], Heck and Roberts 8] and
Burns[2]. Other recent attempts have been presented by Van Wassenhove and Gelders[17], Sen

and Guptal14], Nelson, Sarin and Danielsi 12] and Sen, Raiszadeh and Dileepan [15].
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Van Wassenhove and Gelders have presented a pseudo-polynomial algorithm to enumerate all
of the efficient points for the bicriterion proilem of total flowtime and maximum tardiness,
using modified Smith’s rule. Sen and Gupta h: ve presented a branch and bound algorithm to
minimize a linear combination of total flowtim: and maximum tardiness of a given number of
jobs on a single machine. Sen, Raiszadeh and Dileepan have solved the two criteria of total
flowtime and range of lateness using the same approach as that Sen and Gupta. Nelson, Sarin
and Daniels have presented algorithms for gersrating all of the efficient schedules to various
problems with more than one criterion among the three- objective such as mean flowtime, the
maximum tardiness and the number of tardy jcbs.

Although these methods deal with schedulin: problems with deterministic processing times,
processing times are randomly distributed in most pratical production systems. Scheduling
with stochastic processing times is more comrplex than with deterministic processing times.
Therefore, there are few papers on such a schzduling with stochastic processing times except
for an approach to minimize the expected makcspan or the expected variance of the completion
times[3],[13]. Recently, Jung, Nagaswa and Ni -hiyama[9],[10], [11] have solved a multi-objec-
tive singlestage scheduling problem with stochastic processing times.

We consider a three-objective singlestage scheduling problem with stochastic processing
times which follow normal distributions. The ol jectives to be minimized are the expected value
and the variance of total flowtime, and the m.an probability of tardiness. The expected value
of total flowtime is related to the expected va ue of total in-process inventory cost. The vari-
ance of total flowtime has a close relation tc the difference between the planned completion
times and the actual completion times which nay make bad influence on the succeeding pro-
cess. The mean probability of tardiness is one of performance measures to evaluate the degree
of meeting demand within due date.

This paper is organized as follows: In section 2, a multi-objective scheduling model with
stochastic processing times is formulated. An aigorithm for heuristically generating a set of ef-
ficient schedules is proposed in section 3. Section 4 is devoted to the numerical example. The

computational experience is summarized in sect:on 5. Conclusions are presented in section 6.
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2. Scheduling model

2.1 Problem formulation

Consider an n-job, single-stage scheduling probler. with the following assumptions :
(1} Jobs are all ready to be processed at time ¢ =0.
(2) Job processing times are independent random variables following normal distributions
with known means and variances.

(3) Setup times are included in processing times and are independent of the job sequence.
(4) Job processing is completed without interruption.
(5) The machine is always available.
The following notations are used throughout this paper :

n : the number of jobs

I1 : the set of permutation schedules

n > a permutation schedule

Ju  the job assigned to the ith position in a ichedule(i=1, 2, -+, n).

X, the processing times of job Jy

i * the mean of processing times Xy

o, - the standard deviation of processing times X

d,; . the due date of job Jy

Cy ¢ the completion times of job Jy

Co = LXi~N(Tuy Yo%)
E[C;;] : the expected value of completion times of job J
VICy] : the variance of completion times of joi o
E[Cy} = ;ﬂm VICy] = ;‘;0 i
F(r} : the total flowtime of schedule n

Fm) = ¥C, = L—i+DX

=1
P ..(n) : the mean probaility of tardiness of schedule =
Puu(n) = % ipr-{C/,ide}

where “;” denotes the ith position in a permutation schedule.
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2.2. Performance measures

We consider the multi-objective scheduling problem to simultaneously minimize the following
three performance measures : the expected value E[F(rn)] and the variance V[F(n)] of the total

flowtime, and the mean probability of tardiness P ..(n) defined by

E[F(m)] = Y(n—i+ Dy (1)

=1

V{F(n)] = i:}(n—i-*-l)zaf,;, (2)

Pus(n) = L S(1-a(a)

1= 0(ayln, (3)

where ®(a)) denotes a standard normal c. d. f. defined by

(I)(arij) = [jl \}z_ne'f’s’ydl

ay = ﬂ =1, 2, =, n (4)
VIC.]

Our purpose is to find the set of efficient schedules for this three-objective scheduling prob-
lem. Letting z(n), z(n) and z(n) denote the values of E[F(m)], V[F(n)] and P ,.(n) associated
with schedule n, respectively, we define the efficient schedule as follows :

Definition 1. A schedule r is efficient if and onlv if there exists no schedule n’ such that z(z')
<z(m) for all (€{l, 2, 3} and z(xn) for some [€:l, 2, 3}

A branch-and-bound algorithm can be developed for finding the set of efficient schedules but
requires too much computation time to use in practice. Since the development of efficient al-
gorithm to generate all of the efficient scheduls is very hard, an efficient heuristic algorithm
is proposed in this paper.

First, we construct the following three schedules, i. e, SPT, SPT, and EDD, and analyze
their characteristics to develop the heuristic algorithm :

SPT, is a shedule obtained by sequencing jobs in nondecreasing order of p(break ties in
nondecreasing order of o, and if ties still exist. break them in nondecreasing order of d,).

SPT, is a schedule obtained by sequencing obs in nondecreasing corder of g,(break ties in
nondecreasing order of u, and if ties still exist. break them in nondecreasing order of d,).

EDD is a schedule obtained by sequencing obs in nondecreasing order of d.(break ties in
nondecreasing order of p, and if ties still exist. break them in nondecreasing order of a).

Proposition 1. SPT, and SPT, are efficient sched res to the above three-objective problem.
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Prool. (a) If SPT. is unique, then there is obvious.yv no schedule n#8PT, such that

EF(n)<E[F(SPT)| VIF(n)]<V[F(SPT,)] P .(n)<P ..(SPT) (5a)

and E[F(n)|#E[F(SPT)] V(F(n)|#V[F(SPT,)| P ,;(n) <P ..(SPT,) (5b)

(b) If SPT, is not unique, let [1, be a set of 87T, From the process of generating SPT,, we

cannot find any n#Il, satisfying equations (5a) ¢nd (5b). Therefore, any schedule in I1, SPT,

is efficient schedule. We can prove the case of SP" in a similar argument. ]

EDD is not always effieient schedule because /’DD can not always minimize P..(n). How-

ever, in the following special cases, SPT,, SPT, an| EDD are all the same schedule, and become
a superior schedule which simultaneously minimize. the three-objective.

(1) When w=yx and o=¢ for i=1, 2, -, n, EDD minimizes P ,.(n) because EI[C,Fiy and

V [Cy}Fie’ are independent of schedule. Thereforc, EDD is a superior schedule that simul-

taneously minimizes the three-objective.

(2) When w=u and d,=d for i=1, 2, -, n, SPT, ninimizes P..(n) because E[F(n)] and the nu-

merator in equation(4), +/V[C;} is also minimized by SPT, Therefore, SPT. is a superior
schedule that simultaneously minimizes the three-bjective.

(3) When o,=¢ and d:=d for i=1, 2, ---, n, SPT, ninimizes P,.(n) because the denominator in

equation(4) V/WC[J is independet of schedule and FE[C,] is minized by SPT,. Therefor, SPT, is a
superior schedule that simultaneously minimizes tle three-objective.
(4) When d=d and cv(=0/p)=cv for 1=1, 2, -+, n, SPT,=8PT, and SPT, obviously
minimizes both of E[F(n)] and V [F(n)] SPT.(= SPT,) also minimizes P ..(n) because SPT,
minimizes both of E[C,] and V[C,] in equationi4), and then maximizes a;. Therefore, SPT,
(=8PT,) is a wuperior schedule that simultaneously minimizes the three-objective.
(5) When d=d, yy<p+ and o,<¢;-, for i=1, 2, ---, n, j=1, 2, -, n—1, we get SPT,=8PT,, and
SPT,.(=8PT,) becomes a superior shedule that siriultaneously minimizes the three-objective, in
a similar argument to case(4).

However, most of multi-objective scheduling problems do not always have a superior sched-

ule. Tt is necessary to find all of the efficient schedules when there is no superior schedule in

a given multi-objective scheduling problem.
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3. Generating the set of efficient schedules

In most cases, an efficient schedule is similer to some of the other efficient schedules. In
other words, it is expected that an efficient schudule be drived by exchanging positions of only
a few jobs in other efficient schedules. This cbservation leads to a method for successively

generating the set of efficient schedules.
Let 7 be a schedule obtained by interchanging ;) and ., j<m, without disturbing any other
job in schedule n. Defining Ay, A¢® and Ad for schedule n as
Ap = p— s
Ag® = az;,m—a:[,},
Ad = dy—d,, 1<i<m<n,

we get the difference of the expected value and the variance of total flowtime between 7 and n

as follows :
EF@|-EF(m)] = {(n i+ Duw+n—m+ 1) u}
=Aln—i+ D+ (n-m+1)
= (m=0) (g~ 1)
= (m—iAuw (6)
{(n—1i+ D6*t (n— 1+ 1Y6%}
—~{n—i+ D%+ (n -m+ 16’

= Cn-m—i+2(m—1 (55— o)

VIF(@]-VIF(x)]

= (2n—m~i+2(m—1i Ad’, (7)
From equation(3), the difference of the mear probability of tardiness between 7 and 7 is

obtained by

Pus(® P () = [L0((m)) - L0 )Y

it

{0 (n) — Doy (7)) HB(an)) ~ Blo ()}
+/;m{®(o<g;(n))*fb( 5 (m)n

= (fut Bt ; Buln, (8)

J#ELm

where
B = ®O(ay(n)) - ®lag(m).
B = ®(o(m)} — Do, (D),
B = ®(oy{m)) - D(ap(m) for any j#i, 7.

From equations(6), (7) and (8), we have the following relationships between schedules 7 and 7 :
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Au=0 & EF(m))=E[F(n))
AF<0 © VIF@ILSVIFm)]
BitBut ¥ 20 & Puu(®) 2P uuln)

From equation(4), x(n) and dy(n) are represented as
_ 4y~ EC)

Vvied
dim — (E[Cyl+Ap)
dy — (ElCyHAu

ap(n)= \/W ,
dy — (E[Cy+Ap)

—— » J=m (10)
\’/V[C[mj

op(m j=1, 2, -, n, (9

1<j<m;

a{m), 7<i or m<j.

If Au>0, Ac*=0, and Ad=0, then we get oy(n) =o(%), for any j#i, equivalently, f,=0, for
any j#1, applying the following inequalities to equ:tions(9) and (10) :
ElCy<EIC,), VICIKVIC,)
E[C < EICyH-Ap, VIC<VIC)[+Ad" for an - j.

Unfortunately, we can not say whether or not x;(n)>a(n), equivalently B,>0, because the
difference between x;(z) and «;(n) depends on the sizes of Aw, Ad® and Ad. However, in most
cases, it is expected that ﬂ[i;-i-[f‘m]-kjgmﬁ,j}(), and taat P,.(7) is not smaller than P ..(n). We
can use this relationship for generating the set of efficient schedules.

Generating method

Schedule 7 obtained by interchanging J; with J., 1<i<m<n, in an efficient schedule, =, is
not always an efficient schedule. If efficient schedules exist among all of the schedules obtained
by such interchanges of two jobs in the efficient for generating a set of efficient schedules,
since the maximum cardinality of the set of schedule 7 is less than or equal to .C.=n(n—1)/2
which is much smaller than |IT|=n! Therefore, we propose a method using pairwise inter-
change of any two jobs(PITJ) in schedule n for gemerating a set of efficient schedules. The
proposed method creates an efficient schedule fron: an initial efficient schedule and repeatedly
generates the next efficient schedule from the current efficient schedules.

In our scheduling problem, we get the initial vet of efficient schedules as I1,={SPT,}. The
second efficient schedule is obtained by PITJ in s hedule SPT,. Let I, be a current set of ef-

ficient schedules obtained at iteration ¢ and 7 bc a schedule in IT,. From the current set of
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efficient schedules, Il,, we generate the next :et of efficient schedules, Il.., by PITJ in any

schedule n in T1,. If there exist two jobs at po-itions ¢ and m in schedule = such that
(i, myelI(n)={(, muw<p, and 6> 0 or u <y, and dy>d,., or
W=y 6, =0y and d, =, 1<i<m<n},
then create new schedules by interchanging J,; with JJ, for any (i, m) in I(n). Interchanges of
the other two jobs not in I(x) do not proba)ly generate the next efficient schedule because
both the variance of total flowtime and the wean probability of tardiness are likely to in-
crease according to relationships of equations(7 and (8).
Defining I1(I1,) as
I1(I1,) ={nlschedules generated by interchan;ing -/, with ¢/, in schedule =
for V (i, m)el(n) and Vrn€Il,.

We have

(1) ={z* | € (1)), EF(*)]<EF ()] for */aell(I)},
where T1;(I1,) is the set of candidates for effic ent schedules that minimizes the expected value
of total flowtime in IT(Il,). From II(I1,), we g:t

A1) = {7 7 e L11,), VIF(@)]<VIF(n)] for ¥YreTll(T,)},
where TI{I1,) is the set of candidates for eff cient schedules that minimizes the variance of
total flowtime in I1.(I1,). Finally, we obtain

T(IL) =7 E M), Pow(#) <P oo ()] for ¢2€ ML)},
where l:l(l'[q) is the set of candidates for eff cient schedules that minimizes the mean prob-
ability of tardiness in IT;(IL,). Uniting this set I1(IT,) and Tl,, we get the next set of approxi-
mate efficient schedules, Il,; generated from the current set Il,. The procedure of the proposed
PITJ algorithm is stated as follows :
Algorithm
Step 1. Determine the initial efficient schedule n,=SPT, and set Tl,={r;} and ¢=1.

2. Find TI(I1,). If TI(I1,)=4, go to Setp 5.
Step 3. Find TI(IL,). If T(I1,)=¢, go to Step 5.
Step 4. Set Il,.,=I,UM(I,) and q=q+1. go tc Step 2.
Step t. Stop.

Step

Il, is the set of efficient schedules obtained ‘rom PITJ algorithm. And the overall time com-
plexity by PITJ algorithm is O(N’2°), where N is the number of efficient schedules.



2% 1% Multi-objective Scheduling with Stochastic Processing Times 187

4. Numerical example

We illustrate an application of the proposed PITJ algorithm to a S5-job problem with data

shown in Table 1.

Table 1. Data in an :xample problem

J, J, J, Iy J, Js

W 30 28 22 45 15
i 5 10 6 8 3
d 36 81 125 131 60

From Step 1, the initial efficient schedule is obiained as
n=8PT,=(Js, Ju Js Ji, J) and then I1,=1{r},
where E[F(r,)|=352, V[F(n,)]=1865, and P ., (m,)=0.3188.
From Step 2. we get the following set of job pairs in = for generating the next efficient
schedule :
) =W J2), (T J0)y Ty J1)y (o J )N
Interchanging any two jobs in I(m), we obtain
(L) =tm= {5, oJoy Js, i, Jo)s Te={Js Ji, oy Iy, i),
= (Js Iy Ju Iy Ji)y mu=(Js, Jy Jy Js, S},
where the value of three performance measures associated with each schedule are
E|F(r,)1=358, VIF(7,)]=2313, and P ..(:;)=0.2954,
E[F(7,,)]=368, V[F(7,,)]=1733, and P () =0.1955,
E|F(7,)]=354, VIF(7,0)]=1490, and P ..(:)=0.3184,
E[F(7,)]=386, V|F(7,,)]=1577, and P ..( :,)=0.3975,
From Steo 3, the minimal value of E[F(7)] is gisen by 7;; and therefore we get
(1) =i and =17
From Step 4, we obtain Il.=T1,U ﬁ(ﬂl):{m, 7. . Returning to Step 2, we have the two sets
of job pairs, I{n;) and [(n,), as follows :
In) =y, o), (T J0), (T J)Y,
) ={{Js, J0), (Jy Jo), (Jy J)h

il
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where pair (J,, J,) in I(xn) is eliminated beczuse the interchange of this pair produces the

second efficient schedule 7. Interchanging any tvo jobs in I{m)UI(n,) yields
IHIL) == (s, Ju Js iy J), me={"s Jy, Jo Js Ju),
=Sz s, Joy Jiy Jo)y ma=0( 5 oy, Jy Ju J0),
o= (S5, oy Jiy Iy Ji)y ma={ 5 oJs 1, Iy )Y,
where the values of three performance measure :ssociated with each schedule are
E[F(7,)=358, V[F(7,)]=2313, P ,.(7,) =0.2954,
E[F(7,)]=368, VIF(r,,)]=1733, P 4 (7;2) =0.1955,
ElF(7,,)]=386, VIF(m,)|=1577, P .. (7,) =0.3975,
E[F(7,) =362, ViF(r,)|=1413, ) =0.3161,

o

a2

ward,

'"U;'"U"Ul

E[F (1) J=366, VIF (1) ]=2258, P (7)) =0.1727,
ElF{m)|=371, VIF(m)|=1382, P .. () =0.2124.
From Step 3, the minimal value of L\I' miiis ziven by ay and therefore we get
FHIL) =%, and 7= 1F..
From Sicp 4, we get =1L ﬂ(l'l:):in;, 7. ui. Repeating the proccdure until either TI(I1)
or fl([lq) becomes emply, we obtain the results shown in Talbe 2.

"

Table 2. The set of efficient : chedules obtained from PITJ

the efficient schedules I, ElF(n)| VIF(n,)] Poin)
TNRY USRS B SR 352 1865 0.313
I FRURY SRS P SO 354 1490 0.3184
AT ERITY RS SRS SR 358 2313 0.2954
FANY ST U PO Y 362 1413 0.3161
FiSEDY PO RS S PR ) 366 2258 0.1727
PN PR R B A 368 1733 0.1905
iy Jy oy Sy e 371 1382 0.2124
sl oy, Iy Jy 374 1505 0.2101
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5. Computational experience

This section present the computational experience of the proposed PITJ algorithm. Our pur-
pose is to compare the computation time and the number of efficient schedules obtained from
PITJ algorithm with those obtained from a branch and-bound(BAB) algorithm for generating all
of efficient schedules. To evaluate the accuracy of an approximate set of efficient schedules
obtained from PITJ algorithm, we use two scales, 1.amed the “degree of set approximation” and

the “degree of point approximation”(see Appendix ‘or detail).
5.1 Scheduling problems

Scheduling problems are generated by the follow ng procedure : The number of jobs is speci-
fied as 2=5 and n=10. The value of w, i=1, 2, -, n, are given as integers distributed over
three kinds of range such as {10, 50), (50, 100) aad [10, 100). The values of a, i=1, 2, -, n,
are given by u, cu, where cuvl=a/pm), i=1, 2, -+, n, are generated from the three different
types of a uniform distribution on (0, 0.5], (0.5. 1] and (0, 1], independent of ;. We con-
struct 18 kinds of problems by combining two kirds of n, three kinds of p and three kinds of

cv, and the values of d, i=1, 2, ---, n, are gencrated from another uniform distribution on
[T(1-r), T(1+r)], where T=L_u and r denotes the coefficient of the range of due dates ; r=05
=1

in our problems. Twenty simulation runs are periormed for each problem. The proposed PITJ
and BAB algorithms are programmed in BASIC linguage and tested on an EPSON PC-386VS
(CPU 1i80386) personal computer.

5.2 Results

The computational results are summarized i Table 3, where the number of efficient
schedules, compuation time, the degree of set approximation and the mean of the degree of
point approximation are the averages of 20 simulation runs. The Min and Max of the degree
of point approximation are the minimum and the maximum values among the values of the

degree of point approximation obtained from the :{ simulation runs, respectively.
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Table 3. Comp national resuits

Number Processing Number of omputation Degree Degree of point
of times efficient time(sec) of set approximation
Jobs schedules approxi-
mation
n u c.v PITJ BAB | FITJ BAB Min Max Mean
(0, 0.5] 10.5 10.6 1.3 5.1 0.0082 0 0.0946 0.0165
[10, 50) | (0.5,1] 7.3 7.4 0.6 3.0 (.0004 0 0.0109 0.0033
(0, 1] 13.7 14.1 29 8.0 0.0018 0 0.0320 0.0050
(0, 0.5, 155 15.7 2.8 8.6 (.0011 0 0.0406 0.0061
5 [50,100) | (0.5, 1] 16.3 17.2 3.8 10.9 0.0018 0 0.0292 0.0056
(0, 1] 171 174 3.2 11.0 0.0001 0 0.0091 0.0012
(0, 0.5] 12.6 13.0 2.0 7.0 0.0015 0 0.0776 0.017
[10,100) | (0.5, 1] 89 9.0 1.2 4.0 0.0001 0 0.0026 0.0012
(0, 1] 13.3 13.8 2.4 7.2 0.0014 0 0.0270 0.0045
(0, 0.5] 19.9 295 17.8 3349 0.0006 0 0.1406 0.0330
[10, 50) | (0.5,1] 23.1 39.8 23.9 2832 0.0009 0 0.1519 0.0333
(0, 1] 274 36.1 25.4 3181 0.0003 0 0.1030 0.0186
(0, 0.5] 21.2 23.7 243 2496 0.0007 0.0704 .0144
10 [50,100) | (0.5, 1] 58.3 67.0 66.2 9842 0.0010 0.0792 0.0164
(0, 1] 334 40.2 315 3302 (0.0005 0.0777 0.0132
(0, 0.5] 14.1 22.5 0.0 2910 0.0004 0 0.1302 0.0335
[10,100) | (05,1] 224 32.3 272 1335 0.0014 0.1124 0.0226
0, 10 16.5 27.0 LLS 1208 0.0006 0.0908 0.0209

In case of n=>5, the number of efficient scheiules obtained from PITJ is almost equal to that

obtained from BAB. In case of n=10, the number of efficient schedules obtained from PITJ is smaller

by 2~13(10~40%) than that obtained from BAB. However, the set of efficient schedules obtained

from PITJ is very close to that of efficient schedu es obtained from BAB because the degree of sel ap-

proximation is sufficiently small, that is 0.01~( &2% and 0.03~0.14% for n=>5 and n=10, respect-

ively. PITJ also provides an efficient schedule ver: close to each efficient schedule obtained from BAB

since the Min, Max and Mean degree of point apj roximation are 0%, 0.56~9.46% and 0.12~1.7% for

n=>5, and 0%, 7.04~15.19% and 1.32~3.35% for ; ==10. respectively. Furthermore, computation time

for generating a set of efficient schedules using PI'TJ is much faster than that using BAB.
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6. Conclusions

A multi-objective single-stage scheduling problem was constructed to minimize the expected
value and the variance of total flowtime, and the mean probability of tardiness when
processing times is normally distributed. PITJ alg(rithm was proposed to generate all of the
approximate efficient schedules to this scheduling problem. The results of the computational
experience made it clear that fITJ algorithm eificiently generates an approximate set of
efficient schedules with high accuracy. Furthermor:, PITJ algorithm is applicable to largesized

problems because computation time is O(N’n®).
Appendix : two scales of the degree of approximation

We use two scales for evaluating the accuracy «f an approximate set of efficient schedules
obtained from PITJ algorithm. The “degree of set approximation” is used to evaluate the glo-
bal accuracy of the set of approximate efficient schedules obtainded from PITJ. The “degree of

point approximation” is used to evaluate the irdividual accuracy of approximate efficient

schedules obtained from PITJ.
Notation
m : the number of efficient schedules
k :the number of approximate efficient schedules
n . a permutation schedule
. . an efficient schedule(e=1, 2, ---, m)
7, * an approximate efficient schedule(qg=1, 2, ---, k)
Z(n) : a criterion vector for schedule =
Z(n) =(z(n), zn), z5(n))
L. ¢ the ideal point in the three-objective scheduling problem
L= (miniz(n)}, miniz,(n)}, min{z:(x)}),
W... : the worst point the in three-objective scheduling problem
W= (max{z,(n)}, max{z.(n)}, maxiz,(x }),

Let V be the volume of the reference region defined by

Vzli(max z(n) —min z(n)).
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Let A and B be the volume of the region doininated by at least one of Z(xn,) e=1, 2, -, m,
and at least of Z(n,), ¢=1, 2, ---, &, respectively. we have
m i
A:v—‘};(zl(niﬂ) —z(m;) (z.(m) —miniz (7)}}(z;(n) —mintz(n)}),
k! .
B:V*Zl(zl(nm)—zl(m)(Zz(n])‘min{ai:'c)’r)(Z:;(nj)—min{Z:;(n)’r),
=
The degree of set approximation(DSA) is givea by
_1_B
DSA=1 A
Let Z(n'(n.)) be the nearest approximate efficient point to efficientj point Z(=x). The degree
of point approximation(DPA) with an efficient soint Z(rm,) is given by

Az 7)), Zm)

DPA,
(W o Z(1.))

s €=y Z, Ty M,

where d(Z(n'(r.)), Z(x)) and D(W,., Z(n,)) are the distances in Euclidean space between
Z(n' (n,)) and Z(n.) and between W,, and Z(m, ', respectively. Then, we get the Min, Max and

Mean of the degree of point approximation as follows :

DPAy,.=min{DPA,}, DPAy,.=max{DP \,, DPAMEM:‘_EIDPA,)/m.
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