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An Algorithm for Optimizing over the Efficient Set
of a Bicriterion Linear Programming

Dongyeup Lee*

Abstract

In this paper a face optimization algorithm is deveioped for solving the problem (P) of optimizing
a linear function over the set of efficient solutions of a bicriterion linear program. We show that
problem (P) can arise in a variety of practical sicuations. Since the efficient set is in general a
nonconvex set, problem (P) can be classified as a global optimization problem. The algorithm for
solving problem (P) is guaranteed to find an exact optimal or almost exact optimal solution for
the problem in a finite number of iterations. The algorithm can be easily implemented using only

linear programming method.
1. Introduction

One of the more popular and practical models lLas been used to help make decisions involv-
ing multiple criteria is the multiple objective linear programming problem (MOLP) model. Let
X = {x€R'Ax £ b} be a nonempty, compact polyhedron, where A is an mXn matrix and
b&eR". Then the multiple objective linear programraing problem may be written

(MOLP) “max” Cx, subject to x€X,
where C is a kxXn matrix whose ith row equals ¢, i = 1,2, ,k.
Usually the most preferred compromise soluticn in the multiple criteria decision making

(MCDM) problem is required to be an efficient (nondominated, Pareto-optimal) solution.
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Definition 1

A point x’€X is an efficient solution of pronlem MOLP if and only if there exists no x€X
such that Cx2Cx" and Cx#Cx".

Let Xp denote the set of all efficient solutiors of problem MOLP. The problem of optimizing
a linear function over the set of efficient solutins for problem MOLP may be written

max {d,x), subject to x€X; , where dEK".

In general, when X is nonempty, X; is : nonconvex set. This problem is generally a
nonconvex programming problem. Such problems generally possess large number of local optima
which need not be globally optimal.

The problem of optimizing a linear functior over X can arise in a variety of practical
situations including many types of transportation problems and production planning problems
[5]. For instance, consider a typical problem a homogeneous product is to be transported from
each of s sources to any of k destinations (s+k=m). Let x;,€R" represent the unknown quan-
tity to be shipped from source j to destination i. Assume that for any transportation plan x,
the total cost is given by <{-d,x), where d€R. The overall goal of the decision maker is to
find a minimum-transportation cost plan. How ver, to meet demand required in each of its k
destinations, the decision maker also seeks to minimize total delivery time which takes from
all sources to each of its k destinations. In 1his case, instead of minimizing {-d.,x) over the
set X of all feasible plans, the decision make* could minimize {-d,x) over the set of all ef-
ficient solutions of a MOLP problem. In this jroblem, for row ¢ of C and each transportation
plan x€X, <<,x) would give the total delivery time which takes from all sources to the desti-
nation i. The solution x” obtained from this approach would minimize total cost among all
plans that are efficient in terms of total deliviry time taken to each destination. The solution
x’ would guarantee that an efficient delivery tirne plan is achieved.

As shown in the above example, the comput itional burden of generating the entire efficient
set is avoided by optimizing a linear functior over the set of efficient solutions of problem
MOLP. Furthermore, the decision maker is no' required to choose a preferred solution from a
potentially overwhelmingly-large set of efficient solutions.

Another important practical situation of the problem of optimizing a linear function over Xg
can arise when one seeks to find a minimum ‘riterion value over the efficient set of problem
MOLP. Finding such a criterion value helps cecision makers to set goals and to rank objec-

tive functions, and it may improve the perforriance of certain interactive algorithms for prob-

lem MOLP [9], [10], [13].
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In spite of the potential benefits which can be nbtained by optimizing a linear function over
the efficient set, relatively few attempts have been made to solve the problem of optimizing a
linear function over the efficient set. This is probably at least partially due to the inherent
difficulties involved in solving this global optimization problem.

A few algorithms have been suggested for finding globally optimal solutions for the problem
of optimizing a linear function over the efficient solutions of problem MOLP. However, these
algorithms fail to be practically used since they require repeated use of difficult search
procedures [10], [12], or of global optimization suvroutines [6], [7].

In this paper we consider MOLP problem with two objectives, which is called a bicriterion
linear programming problem (BLP). Thus the prcblem of central interest in this paper seeks
to optimize a linear function over the set of all efficient solutions of problem BLP. It may be
written

(P) max <{d,x), subject to x€X; , where d€R" and X; denote the set of all efficient
solutions of problem BLP.

In this paper a face optimization algorithm is developed for solving the problem P of
optimizing a linear function over the set of efficient solutions of a bicriterion linear program.
The goal of the algorithm is to find an exact optimal or almost exact optimal solution with a
relatively small computational effort.

The plan of this article is as follows. In Sec:jon 2 we present the necessary theoretical
prerequisites for developing our algorithm for solving problem P. In Section 3 the algorithm
for solving problem P is presented. In Section 4 an example is solved to illustrate the face

optimization algorithm and its implementation. Concluding remarks are given in Section 5.
2. Theoretical Background
One of the more attractive features of problern P is described in the following theorem,
which follows immediatedly from [4].
Theorem 1: Problem P has an optimal solution which is an extreme point of X.
The algorithm we shall present for solving problem P will find a new efficient extreme point

at each iteration and terminate with an efficient extreme point which yields the maximum <d,

xy among all of the extreme points of X thereby found.
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Definition 2
Let [1, wl, i=1,2 be the range of values tha' cx achieves over the efficient solution set of
problem (BLP). For each i=12, [1, w] is called the range of nondominance for c/x for prob-

lem (BLP).

In the algorithm, theorem 2 [1] is used to determine the range of nondominance for each
objective function and theorem 3 [3] is used tc find a new efficient point which belongs to a

new efficient face.

Theorem 2: Consider the following problems for i, j€{1,2} and i#j.
u, = Maximize {c, x,) subject to x€X, Uy
1; = Maximize {c, x> subject to x€X?, (L))
where X* denotes the set of optimal solutions ‘or problem (U;). Then for i=1,2, the range of

nondominance for c¢'x for problem (BLP) is given by [1;, wl.

Theorem 3: Let [1, w] be the range of nondominance for cix for problem (BLP). Then x'€X;
if and only if ° is an optimal solution for proklem (P,) given by
maximize {c;, x»  subject to c;x=b, x€X,

for some be[l, ul.

In the algorithm, the following two results, theorem 4 and theorem 5, are used to find a
new efficient face which contains a new efficient point. The first result follows easily from [2].
The second result is derived from the first resclt by using duality theory [8].

First, consider the following linear program P, with x"€X.

(P:,) max A'C, ©

subject to
Cx2Cx’ (1)

x€X

Theorem 4: Let x°€X. Then x°€ X if and orly if for any A)0, x° is an optimal solution of

the linear program (P, ).

Theorem 5: Assume that A0 and x°€ X, Let:u”", w*) be any optimal solution to the linear

programming dual D, ; of problem P, : where u® represents the dual variables corresponding



#20% 1B An Algorithm for Optimizing over the Efficient Set of a Bicriterion Linear Programming 151

to the constraints (1). Then x° belongs to the efficient face Xp of X, where i°=u’+1° and X>.

N
denotes the optimal solution set of the weighted sum problem(P,) with A=1" : max{i"C, x>

subject to x€ X.

PROOF: To prove the desired result, we need to show that x° is an optimal solution to prob-

lem P; with fx=}?°. The dual linear proram to problem P, ;- is given by

Dyt min — {x° 'C", up + <b, w),
subject to
—CTut+A"w=C"2’,
u, w0

By Theorem 4, since x"€ Xz x° is an optimal solution for problem P, .. By duality theory of

linear programming [11],

ATCx° = —&7°CT, u?) + <b, w.
Rearranging this equation, we obtain
(u*+:i7)"Cx°=<(b, w* (2)

A
Now consider the dual linear program to problem P, with i=A°. This dual program is given

by

D: min <b, w),
subject to
A'w=CT(u"+1°)",
w20,

Since(u™, w”) is an optimal solution to problem D, w° is a feasible solution for problem D.
Let w be any feasible solution for problem D. Then it is easily seen that (u”, w") is a feas-
ible solution for problem D, ;. Since(u”™, w™") is an optimal solution for problem D, ; this
implies that

—&TCT, uD) + (b, w) 2 —&TCT, W)+ (b, w,
or, equivalently, <b, w) 2 <b, w*). It follows that w° is an optimal solution for problem D.
Notice also that since x"€ Xg, x° is a feasible solution for problem P, with l=,1/\°.

To summarize, we have shown that with &=A'A°, x° is a feasible solution to the linear
program P, w° is an optimal solution to the dual linear program D of problem P, and, by
(2), that the objective function value of x° in problem P, equals the objective function value
of w* in problem D. From linear programming duality theory [11], this implies that x° is an
optimal solution to problem P, with l=f°, and the proof is complete.

The following corollary of Theorem 5 is immediate.
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Corollary 1: Assume that A°Y0 and x"€ X Let(u’, w’") be any optimal solution to the linear

programming dual D, : of problem P, ;, where u’ represents the dual variables corresponding
to the constrants (1). Let [°=u°+,l°, and let voz(f")TCxO. Then the efficient face X of X
can be represented as

Xp={xe X|(L*)Cx=v.}
From corollary 1, it can be easily seen that thz following linear programming F, ; finds an ef-
ficient extreme solution shich maximizes {d, x> over the set of the efficient face X which

> Q
contains x

(Fie) max d, x)
subject to
(1)Cx=(1)"Cx"
x€ X.

3. The Algorithm

Let x€X and e€R" is a whose entries each equal to one. Let v denote the optimal objec-

tive function value for problem P. The algorithon can be described as follows.

Initialization
(a) Choose arbitrary small positive number ..
(b) Specify the objective function which would be wused in reducing the range of
nondominance. Without loss of generality. assume that this function is cix.
(c) Determine the range of nondominance [, u.] for cix by solving the following problems
for 1, j€{1,2} and i#j.
u;, = Maximize {c, x) subject to x€3, (U
1, = Mazximize {c, x) subject to ¢/x2 c[x* xEX, (L)
where x* is the optimal solution found for problem (U;).
(d) Let x° be the optimal solution found for problem (L,) and v¢ = L.
{e) Solve the linear program given by maximize {d, x), subject to x€ X.
Let x* be the optimal solution and m=<, x").

If v*=m, then stop and conclude that v 1s equal v' and x° is an exact optimal solution

for problem P.
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(f) Let by=L+e and k=1.

At iteration k(k=1),
Step 1.(Face optimization)
Step 1.1
Find a new efficient point x° by solving the following problem(P,) given by
maximize {c, x), subject to c;x2b,, x€X.
Step 1.2
Solve the linear program(D,.,) given by
D.. : min —&7CT, w) + (b, w)
subject to
—C'ut+A"w=C"e
u, w20.
Let(u™, w™™) be an optimal solution to problem D, .
Step 1.3
Solve the linear program (F..) given by
Fe. : max {d, x)
subject to
(u"+e)"Cx=(u"+e)"Cx°
x€X
Let x* be an optimal solution to problem F,, .
If {d, £ > v, then x*=x* and v'={d, .
If v°=m, then go to Step 5.
Step 2. (Update the value of b,)
Solving the following linear program given by
max {cy x)
subject to
(u’+e)"Cx={(u"+e)"Cx’
xeX.
Let by be the optimal objective function value.
If b,=u, then go to Step 5.
Step 3. (Update the value of x')
If cix" by, go to Step 4.

Update the value of x' by solving the following linear program given by
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maximize {d, x), subject to c;x=b,, x€X.

Let x° be the optimal solution and m={d, »".
If v°Zm, then go to Step 5.
Step 4.
Go to Step 1 with byy=b,+e . Let k=k+1
Step 5.
Conclude that v is almost equal to v° and that x° is an almost exact optimal solution for

problem P, and terminate.

The algorithm uses a face optimization procedure to find an exact optimal or almost exact
optimal solution for problem P in a finite number of iterations. Note that the algorithm can
be efficiently implemented using only linear programming methods.

At each iteration, with a little perturbation of b, in Step 4, the algorithm finds a new ef-
ficient face of X and a new efficient extrem: point which maximizes {d,x) over each face
found. With the properly chosen value of & tae efficient faces the algorithm finds would be
adjacent and they include an exact optimal solution of problem P. Whenever the algorithm
terminates at Step 5, the point x° is chosen s: as to maximize {d,x) over all of the efficient
extreme points of X thereby found. Since there are finite number of efficient extreme point in
X, it is obvious that the algorithm always terminates in a finite number of iterations.
Although the algorithm searchs all efficient faces of X, in many cases it terminates before it
finds all efficient faces of X due to the ex=rcution of Step 3 in the algorithm. This would im-
prove the performance of the algorithm in terins of computational efficiency. In Step 5, x° is
an exact optimal or almost exact optimal solution for problem P in the following two senses:
(1) Problem P has an optimal solution whicl: is an efficient extreme point. (2) With the
properly chosen value of g there is little possibility that the algorithm fails to find an ef-

ficient extreme point which is an optimal solution of problem P.

4. An Example

To illustrate the suggested implementation of the face optimization algorithm, consider the
MOLP given by
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max 2xtx,

max —x, +x;
subject to
5% + 6x, + 3x; £ 30
nx+ x+ x = 6

55 + 3%, + 6x; £ 30
X, X X3 2 0
Let d=(3, -1, 2).
Then the problem P: max {d, x)
subject to x€ X;
, where Xz=y(C, D)YUy(B, C, F, G)Uy(G, H).
The sets X and X; are shown in Figure 1. Table 1 lists the extreme points of X. The
maximum value of {d, x) over X equals 15.33 and is achieved at the extreme point E, which

does not belong to Xg.

Figure 1. The Sets X and X
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Point coordinates
A (0, 5, 0)
B (0, 4, 2)
C (0, 2, 4)
D (0, 0, 5)
E (4, 0, 1.667)
F (4, 0.667, 1.333)
G (4, 1.333, 0.667)
H (4, 1.667, 0)
I (4, 0, 0)
0 (0, 0, 0)

Table 1. Extreme Points of X

Initialization
(a) Let £¢=0.05
(b) Let the objective function which would be used in reducing the range of nondominance
be cix.
(c) [1p wi=[+4, 5]
(d) x*=(4, 1.667, 0), v*=10.33.
(e) x=(4, 0, 1.667), m=15.33. Since v°#m, continue.
(f) by=-3.95 and k=1.

Iteration 1
Step 1.
Step 1.1.
x°=(4, 1.642, 0.05) is found.
Step 1.2
(W, wT)=(u, w, wi, W wy, w,)=(1, 0, 0.33, 0, 0, 1.33) is found.
Step 1.3.
x=(4, 1.33, 0.667) is found. So {d, x'>=1..
Since {d, x')) v%, then x*=(4, 1.33, 0.667) &nd v'=12.
Since v'#m, continue.
Step 2.

b,=-3.33. Since b;#u, continue.
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Step 3.

Since cjx'=-2.33>b;, go to Step 4.
Step 4.

Go to Step 1 with b,=-3.28 and k=2

Iteration 2

Step 1.
Step 1.1.
x’=(4, 1.28, 0.72) is found.
Step 1.2.
(™, wh=(w, uy wi, Wy Wy wi)=(0, 0, 0, 1, (), 0) is found.

Step 1.3.

xX'=(4, 0.667, 1.33) is found. So {d, ¥>=14.
Since {d, x> » v¢, then x*=(4, 0.667, 1.33) and v‘=14.
Since v‘#m, continue.

Step 2.
b;=4. Since b,#u, continue.

Step 3.
Since cix'=-2.33 < b, update the value of ¥.
x=(0, 2, 4) and m=6 are found.
Since v° 2 m, go to Step 5.

Step 5.
Conclude that v is almost equal to v'(=14) and that x'=(4, 0.667, 1.33) is an almost

exact optimal solution for problem P, and terminate.

5. Concluding Remarks

We have considered the problem (P) of optimizing a linear function over the set of efficient
solutions of a bicriterion linear programming. This problem is a case of problem of optimizing
a linear function over the set of efficient solutions of a multiple objective linear program with
two objectives. In this paper, we have developed a face optimization algorithm for solving
problem (P). The algorithm finds an exact optimal or almost exact optimal solution for the

problem (P) in a finite number of iterations. It can be practically used in solving problem
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(P), since it can be easily implemented using only linear programming method and does not

use difficult search procedures or global optimization subroutines.
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