최전 다면경을 이용한 도파판 CO$_2$ 레이저의 Q-스위칭

최종문·김용평
한국표준과학연구원 레이저그룹

강용철·김재기
국방과학연구소

(1994년 11월 18일 접수)

연속출력 1.2W인 도파판 CO$_2$ 레이저를 설계 제작하고 회전 다면경을 이용하여 Q-스위칭 동작시켜 그 특성을 측정하였다. 내경 2mm, 길이 200mm인 BeO 튜브를 사용하여 도파판 CO$_2$ 레이저를 제작한 뒤, Q-스위칭을 수행하기 위해서 레이저의 전반상황 위치에 회전 다면경을 설치하였다. 다면경을 7,559 RPM으로 회전시킬 때 발생된 Q-스위칭된 레이저의 젤스톤은 120μs이고, 각 폴스의 힌데출력은 250W이었다.

I. 서 론


II. Q-스위칭 레이저 장치의 설계 및 제작

1. 도파판 CO$_2$ 레이저 설계 및 제작

dopa판 레이저는 기존의 레이저와는 달리 공진기 내에서 도파손실(waveguide loss)과 결합손실(coupling
loss)이 있으므로,[11,12] 이 두 가지 손실의 합이 가장 적게 일어나도록 설계 해야한다. 즉 도판 공기 CO₂ 레이저는 비유전체로 도판 산성 에서 방전을 유지시킬 뿐만 아니라 도판 속에 따른 레이저 촉은 전류 레이저다. 그러나 일반적인 광섬유 도판 임상과 달리, 공동 유전체 도판 경우에는 코어부분의 용접이 케이지 부분보다 낮으므로 전달공의 부분반사율을 통해서 진행된다. 이때 발생하는 손실은 도파손이 극도로 작은 BeO(Beryllia, 99.5%)를 도파성으로 사용하였다. 또한 BeO는 열전도체(thermal conductivity)가 20℃에서 260~300 Wm⁻¹K⁻¹ 정도로 뛰어나 오로지 CO₂ 레이저를 공명적으로 동작시킬 수 있는 장점이 있다.


1. 도파간에 거의 일착하는 큰 반경의 구멍 경우 (저와 평면경일 경우)
2. 큰 반경을 갖는 기구의 곡률 중심이 도판 임구에 있을 경우
3. a=2.415 값 근처에서 도판 도판에서 국물의 절반되는 위치에 놓는 경우

위 방법에 따라서 레이저 반사사의 위치에 대한 조건을 살펴보면, 출력경의 경우는 손실을 가장 적게 할 수 있는 방법은 Degnan의 스칼라 위치와 맘 case 1에 준하여 도판 임구에서 9.9 mm 이내로 설치하려면, 본 실험이에서는 도파도 80%, 직경 24.5 mm인 ZnSe 반사면을 도파도 임구에서 9 mm 떨어진 곳에 설치하였다.

Q-스위칭용 회전다면경을 설치하기 위해 도판 공기 CO₂ 레이저의 발진 유무를 확인하기 위하여 회전다면경 대신에 평면반사경을 사용하였다. 평면반사경은 도파판 입구에 떨어진 곳에 위치하게 되므로 Degnan의 스칼라 위치에 맘 case 3에 준하여 설치하였다. 또한 회전다면경의 경우에 각반사면에 국물은 줄 수 있으므로 도파판과 평면반사경 사이에 ZnSe 렌즈를 설치하였다. ZnSe 렌즈의 위치는 기존 상용의 ZnSe 렌즈를 사용해야 하는 관계로 광섬유 격렬 손실이 1.3%보다 크게 될 조건이 254 mm, 반경 127 mm인 ZnSe 렌즈를 도파판 입구에서부터 127 mm 떨어진 위치에 고정시켜서 사용하였다. 또한 렌즈의 중심과 공정기의 광축을 일치시키기 위해서 XY translator 움직이 부착하여 사용하였다.

선형광도면만 발전하도록 ZnSe Brewster 창을 도판과 함께 둔 경우 부착하였는데, Brewster 창은 2 mm 두께의 ZnSe 결정형평면을 20×20 mm²로 가공한 뒤 NORG LAND사의 optical adhesive 61을 사용하여 Marco 세라믹 위에 부착하였다.

작은 손실로 공동 유전체 도파모방 광을 진행하기 위해서는 도파모방의 크기는 임상과의 가장 100 범 위 상의 적정이어야 한다. 따라서 10 μm 임구의 광장에서 방전하는 CO₂ 레이저를 제작하기 위해서는 1 mm 이상의 적정을 갖는 도파론을 사용해야 한다. 본 실험이에서는 가공상의 관리성을 고려하여 위치 20 mm, 길이 200 mm의 BeO 봉 2 mm 직경의 도파로가 동일 형태로 미국의 Goodfellow사에 주문 제작하여 사용하였다.

방전용 전극은 BeO 도파판에 직접 설치하기 위해 경합효율면에서 유리하나, BeO 도파판을 가공할 때 발생하는 분말이나 먼지들의 작용이 대단히 강하기 때문에, 본 실험이에서는 그림 1에서와 같이 BeO 도파판의 양면에 기계 가공이 쉬운 Marco 세라믹(Machineable ceramic)을 부착한 뒤 전극을 설치하였다. 전극은 도파판의 양쪽 각도 6 mm 떨어진 위치에 양극과 음극을 설치하여 글로우(glow) 방전이 일어나도록 제작하였다. 전극의 채질은 방전 기계와의 반응 및 sputtering에 매우 작은 것으로

---

그림 1. Schematic diagram of waveguide CO₂ laser.

레이저 발광관은 BeO 도파관을 200×80×20 mm 크기의 알루미늄판 2장 사이에 반경 10 mm의 도파관용 홈을 판 뒤, 도파관을 위치시키고 두장의 판을 볼트로 사용하여 고정하였다. 알루미늄 판은 레이저 발광관 뿐만 아니라 도파관 지지대로 역할을 하도록 하기 위해서, BeO 도파관과 알루미늄 판 사이에 열연도성 실리콘 그리스를 칠하여 도파관에서 발생하는 열이 잘 전달되도록 하였다.

이와 같은 조건하에서 실제 제작된 레이저의 개략도는 그림 1과 같다. 가스 주입장치는 고압가스 실린더, 레귤레이터, 가스 밸브, 유량조절용 Niddle 밸브, 압력계, 로터리식 진공펌프 등으로 구성되어 있다. 레이저 발사용 가스는 CO₂, N₂, He을 사용하였고, 가스주입은 실린더에 담긴 고압가스를 레귤레이터를 사용하여 약 20 psi 정도의 압력을 납은 뒤, 가스밸브와 Niddle 밸브를 사용하여 혼합물을 정밀 조정한 다음 공진기에 넣어 주입하였다. 가스 혼합물을 조정하는 방법은 가스 밸브를 열어 한가지의 가스만을 흘리면서, 각 가스의 혼합비율과 비례하는 압력이 되도록 나들밸브를 조절하는 방법을 사용하였다. 혼합된 가스는 레이저 공진기 내에서 발전되고, 사용이 끝난 가스는 진공펌프를 통과하여 대기 중으로 흡입되도록 하였다. 그리고 모든 가스가 호르는 상태에서 공진기 입구에서 압력과 축구에서 압력의 평균값을 레이저 매질가스의 총압력으로 기록하였다.

전원공급기는 최대 15 kV, 25 mA의 용량을 가진 Glasssman High Voltage사의 Er Series를 사용하였고, 800 kΩ, 80 W의 Ballast 저항을 공진기에 직렬로 연결하여 사용하였다.

2. Q-스위칭 장치

회전다면형은 알루미늄 판이나 유리판을 회전축에 평행한 밑면에 절차 각축을 변사면으로 만든 것으로, 변사면의 수는 6, 8, 12, 24, 48면 등이 있는데, 본 실험에서는 6면면을 사용하여 실험하였다. 회전다면형은 도파관 레이저에 적용할 경우에는 변사면 폭이 3 mm 정도의 작은 것을 사용가능하므로, 회전다면형을 구동시키기 위한 모터도 작은 것을 사용할 수 있다. 따라서 회전에 의한 진동발생은 현저히 줄어들게 된다.

레이저의 전반사정 위치에 회전다면형을 설치하고 이
그림 2. Schematic diagram of Q-switched laser using a rotating polygon mirror.

그림 3. Picture of Q-switched laser using a rotating polygon mirror.


그림 5. Pulse shape of a Q-switched pulse Pulse width: 120 ns, Peak Power: 250 W Gas mixing ratio: He:N₂:CO₂ = 5:3:2, 85 torr Power supply: 12 kV, 13 mA

이와 같은 조건하에서 다면경의 면이 공정기의 광축에 대해서 수직이 되도록 조정하고, 레이저를 연속 발전시 키먼 약 1.2 W의 레이저 출력을 얻을 수 있었다. 같은 조건하에서 다면경을 7,559 RPM(레이저 프린터 내에서 사용했던)으로 회전시켰을 때 그림 4와 같이 퍼스반복을 13.8 μs, 퍼스폭 120 ns로 Q-switching 됨을 확인하였다. 그림 5는 연속적으로 Q-switching된 퍼스중 1개의 퍼스폭을 관찰할 것으로 퍼스폭이 120 ns(FWHM)임을 알 수 있다.

IV. 결 론

본 연구에서는 연속출력 1.2 W인 BeO 도파관 CO₂ 레이저를 제작한 뒤, 회전 다면경을 사용하여 제작한 도파관 레이저를 Q-스위칭 하였다. 회전다면경은 레이저 프린터용으로 개발된 것을 사용하였고, 6개의 반사면을
가진 회전다면경이 고정속도인 7,559 RPM으로 회전할 때 Q-스위칭된 레이저의 펄스폭은 120 ns(FWHM)이고, 철두 출력은 250 W이었다. 사용한 회전다면경의 특성으로 인하여 7,559 RPM 이외의 회전속도에서 Q-스위칭 현상을 관찰하는데 어려움이 있었으나, 가변속도를 필요로 하지 않는 Q-스위칭 응용분야에는 본 실험에서 사용한 방법이 충분하게 적용될 수 있을 것으로 판단된다.

감사의 말

본 연구 수행을 위하여 회전다면경을 제공하여 주신 금성사 정보시스템연구소 최훈부서에게 감사의 뜻을 표합니다.

참고 문헌


Simple Q-switched Waveguide CO₂ Laser Using Polygon Mirror

Jong Woon Choi and Yong Phyung Kim
Laser Group, Korea Research Institute of Standards and Science, Taejon 305-600, Korea
Eung Cheol Kang and Jae Ki Kim
Agency for Defense Development, P.O. Box 35, Daejeon 300-600, Korea

(Received: November 18, 1994)

Q-switched Waveguide CO₂ laser using polygon mirror were constructed and their output characteristics were measured. Waveguide was made of the beryllium oxide tube of inner diameter of 2 mm, outer diameter of 20 mm, and length of 200 mm. A flat ZnSe output coupler of 80% reflectivity was placed on the 9 mm distance from the end of the waveguide. Convex lens was used to reduce the coupling loss between the polygon mirror and the waveguide. The polygon mirror was located behind of convex lens. With this condition, continuous output of the laser were measured as 1.2 W. In the Q-switched mode, pulse width 120 ns were measured with rotational speed 7,559 RPM, and peak power of up to 250 W.