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On the Improvement of the Stability
Robustness in the Discrete-time LQ Regulator
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I . Introduction
We consider the linear discrete-time controllable sys
tem

Xp-] = A’Ck + Buk (1)

where x, € R", u, € R”, x, + 0, A and B are con-
stant matrices with the appropriate dimensions, and
(A, B) is a controllable pair. The LQ control law which
minimizes the following LQ performance :

Jonu) = B x Q@+ wRul @

is given by

up=—(R+B'PB) 'B'PAx,= ~Kx, (3

where Q= R " is positive semi- definite, (@'*, A) is an
ReR™ " is
diagonal, and P is the positive definite solution of the
following algebraic Riccati equation (ARE) :

P=A"PA+Q-A'PB(R+B'PB) 'B'PA (4)

observable  pair, positive  definite  and

In general, the model uncertainty i1s represented by two
types -
Gy2) = L(2)G(2) (5)

and

11 = (A+84)x, + (B+5Bu, (6)
in the frequency and time domains, respectively, where
L(z) 1is the multiplicative model uncertainty in the
frequency domain, and {dA, 6B} modeling errors in the
time domain. Since the relationship between L(2) and
{8A, 6B} is not clear, the robustness against each type
of uncertainty has been by different
methods.

The stability robustness in the frequency domain can
be determined by the minimum singular value of the
return differencc matrix. The larger the minimum
singular value of the return difference matrix is, the

investigated
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more uncertainty of L(z) can be allowed [1,2]. It is well
known that the continuous-time LQR (CLQR) with a
diagonal control weighting matrix is considered to bhe
robust since the minimum singular value of the return
difference matrix is always greater than or equal to 1
for multi-input systems [1,3]. For the discrete-time LQR
(DLQR), however, the minimum singular value of the
return difference matrix is not greater than 1 even for
single input systems [4]. It is usually less than 1 and
can be equal to 1 for the trivial case of zero feedback.
Thus the general method to increase the minimum
singular value of the return difference matrix of DLQR
is important for the stability robustness. But this has not
been discussed in the literature. This paper suggests the
general method to increase the minimum singular value
of the return difference matrix of DLQR in terms of
weighting matrices.

The stability robustness in the time domain depends
on how large parameter variations {84,8B} can be
allowed. The maximum singular value of allowed mo-—
deling errors of {8A,8B}) are often called stability
robustness bounds in the time domain [56]. It is known
that CLQR with cheap control and the continuous—time
LAQG/LTR (loop transfer recovery) regulator may not be
robust in the time domain even though they are known
to be robust in the frequency domain [7,8]. Therefore the
stability robustness bounds against parameter variations
are important and these bounds were obtained for CLQR
[S] and the continuous-time LQG regulator [10]. In the
discrete-time case, however, the bounds have not been
investigated. In this paper, the stability robustness
bounds in the time domain for DLQR are obtained and
their properties are investigated. The relationship be-
tween the stability robustness bounds in the time domain
and the minimum singular value of the return difference
matrix is not known for CLQR, but will be discussed for
DLQR in this paper.

This paper is organized as follows. In Section II, the
method to increase the minimum singular value of the
return difference matrix for the stability robustness in
the frequency domain is suggested. In Section III, the
stability robustness bounds in the time domain are
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obtamed  and their properties  are investigated. Con

chisions are given in Scetion [V,

I1. Stability Robustness of DLQR in the
Frequency Domain
The stabiliny robustness in the  frequeney domain s
closely related to the retarn difference matrix. The return
difference matrix F(z) of the closed loop DEQR is given

I

Fley = [, 1 Ka, 4 'B (1
where A is a0 constant feedback gain of the DLOR
which 15 defined as

K = (R - B'PB) 'B'rA. ()

From ) and 0D we can obtain the following equation.
FUUR + B PBC2)

(059}

S REBYZ LA e, A B
where | -] “denotes the conjugate transpose of
I -] From this cquation we  can o also obtain the
following incquality where o -} and o, -1 denote

the maximum and  minimum singalar values of [ -]

respectively,

FUaOF)] = ol #1671, AN Yo,
A "Bl fel RBIPB]

ffurl (h

We deline g ™ 4ol mRABG L AD T a,

i

A B el RYBIPE) L

to model uncertainty LGz of KO the closed loop system

It s known that with respect

s wtable under some conditions if o[ £ Yt A S
[ and it is guaranteed that the discrete tme LOR has
at least the gain nuwrgin of [ T/ - ) 100 1))
and the phase margin over  cos (1 0545 (2] The

larger e s, the larger LGz can be allowed. However it
a,l K] s

less than or cqual to 1 and the cquality holds tor zero

i known rthat in the single input case,

feedback only [ and this Faet can he extended 1o the
nuidtt input case as follows.

min gl M =

1

LLemma 1 : I and the equahty

holds for zero feedback only.

The proof of this lemma is omitted {or brevity. From
lemma, we thet [LOQR
the robustness  in frequency

this can  Kknow the discrete tfime

s poor  stability the
domain. But we can improve the stability robustess by
making s¢; as large as possible. To make ¢ large. we
ol the solution P ol the ARE
[0 1 terms of weighting matrices.

that Q= «@, and (Q7. A is an

Then P ois a

must know the property

Assume observable

Dl monotonic  increasing - function of @

HLES] and the increasing rate o P/ de s less than or

cqual to P I1TL By using the above properties of P, we
can obtain the following theorem.
that ¢ =~ @, and (G, A is

Theorem 1 Assume

an observable pair wherew >, Then the following sta

femients hold.

MOl - AlS3t - AAEIES =2A HTdE M2z 19% 12
(1) The smaller @ 1=, the larger g
(2) When the svstem matrin A is stable, a1 F(2)]

goes to 1 as a tends to zero.
Proof = (1) Without loss of generality, we can assime

that ® - [7,. From the definition of .

i3 - ming,, [ 4,487 (2 1,

el 4L BTPB] . e

It s well known that £ = @ This  fact implies that
AP/ da = @, So. for anv normalized x = R”
Aol -pppp o 4o min o gt
doe 7! & Cda | e ) o
AD e, - B
d N  , min LT
dr m{v BB o ; ol Bz 1,
AN 'Qad, 0 e

sl BB MY s B (2 AD

Gy (2, - A) "Bl
sol BIQUEB el B0 LD QUG- D )
sl BTOB-BTC- A QL A B )
B AD N iAW, D

Ol UL~ 1 "By

ey AY T eAGH A TBe 0.

This implies thin

d o d  min il
da (7\[” /u, 13 [bl oot \ | ff,‘,[ ],,‘ Bz /
AN eear, b '

Thus ye, creases as ¢ decreases.
(20 Iris known rthat 1P monotonically tends o zero as d
pocs o zero when the system matris A is stable. Thus
hoth B8P and Bz "1, A" 'l —A)

3

fotend 1o
S0,

becanse s

Zor0 asae  goes oo zero. Frome the  equation

gl F(2] tends to ]
diagonal. n

From Theorent 1, the nunimum singular vilue of the
retwrn dilference matrix of the discrete time LOR can be

asa tends o zero

made large if the ratio of Q 1o R becomes small. Thus
the stability robustness with respect to model uncertainty
[.tz) of IH) can be mproved by decreasing the ratio of
Q to R This fact is illustrated by the following example.

Example 1: We consider o svstem and weighting
matrices as {ollows,
9512000 " 220010 7~ 1Lg2dadn
A—] 0.385x10 8.673x10 ' —2.393x10
1.264x10 2.30910 1 6363210

‘ 1808610 9.385.010 {
( 3

I3 1.294x10 5.244x10
\ 1.065x10 1 6.825x10
1 40
W=« 011 ’ and RS diagCl, 1), where A is sta
011
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ble. Whena/8 is 10°.10%,1 and 10" the minimum sin-
gular value of the return difference matrix is 0.16806,
0.50335, 096951, and 1, respectively. From each minimum
singular value, we obtain the gain margin of [0.8561,
1.20201, [0.6652, 2.0135], [0.5077, 32.796], and [0.5, 212370],
respectively, and the phase margin of 23.656° , 41.555° ,
58.986" , and 60° , respectively.

From the above example, it is noted that the minimum
singular value of the return difference matrix and the
gain and phase margins increase monotonically as the
ratio of Q to R decreases and converge to 1,[ (0.5,00)
and60° , respectively.

M. Stability Robustness Bounds of LQR in the
time domain
Now we consider the robustness against modeling
errors in the time domain. We assume modeling errors
8A and 8B in A and B, respectively. Then the real plant
1s represented by the equation I[(6). We can state the
following theorem.
Theorem 2 : Assume that the control 1(3) is applied to
the real plant 1(6). Then the resulting closed loop system
1s asymptotically stable if the following inequalities hold.

0'1(6A) < A when 6B=1( (1)
6,(8B) < puy when SA=0 (2)
0,{0A —0BK) < g, (3)

where
ta=1/1 0(PLA+A 013<P1,Ac)+0‘1(PL)}”2] ,
up=uaslo(K), Ac=A—BK, K is given by

I1(2),

Lyapunov equation

and P, is the positive definite solution of a

A(_‘TPLAC - PL = _1,1' (4)

Proof : Let's choose a candidate of the Lyapunov

function as V(X)) = x Prx, Then
3Vk(x/e) = VkH(x/m‘ 1= Vilxe)

%2 (Ae+B8A—38BK) P (Ac+ 84— 6BK)x,

T
— X Prxy

If

<[ o(PL)o(8A—SBK)+20(P Ao (SA
—8BK)—1] x» %

Thus 8V,(x,) is negative if the inequality [(3) holds.
When 8B=(,

SVilaw) = 2, (8ATPBA+8A P, Ac—I)x,
<[ 0,(P)6H8A) +20 (PLADG(8A) —1]1 x, xs

The right hand side of this inequality is negative if the
inequality MI{1) holds. When 8A=0,

SVilxp) = x, (K"8BTP 6BK+2K"8BTP, A —1)x,
<[ 6,(Py) 6,2(K) 6,°(8B) +20, (P A ( K)oy (8B)

—11] —‘fkTX/e.

The right hand side of this inequality is negative if the
inequality II(2) holds. N

#4 and iy are functions of the feedback gain K and K
is a function of the ratio of Q to R. In order to explain
properties of £, and gy , we must know the relationship
between K and the ratic of Q to R. It is well-known
that K is finite even though the ratio of Q to R tends to
infinity. The following lemma states a
property of K.

Lemma 2: Assume that Q=a@Q, and (Q)?, A) is a
observable pair where «>0. Then the non zero singular
values of K are nondecreasing functions of « when the
system matrix A 1s nonsingular.

Proof : Since the non-zero singular values of K are

monotonic

the square roots of eigenvalues of Y=KK’, we only
show that d¥(e)/da = 0. From the equation II(2)
<A¥e)  _ (r+B"PB) "Bl L (I,-B(R+BPB"
AATP} +PAAT { I,—PB(R+B'PB) !
BV 9y pr+B7PR)

=(R+B7PB) "B %’5 (1,4 BR\'BTP) !
BN AATP+PAAT(I,+PBR'BT)™!
dVP, T -1
de ) BER+B'PB) .

Let
T=P" U= (I,+P"BR'BTP?) 7
S=UT "(dP/de)T ' U, and W= UTAATTU,
then
AN _ (gepTPr) 'BITU UT L

TUUTAATTU + UTAATTUUT ™!
o)
%ﬁ’ T 'Ul U'TB(R+B"PB)

=(R+B"PB)'B"TU ' SW+Ws] U 'TB
(RBTPB)"!

=(R+B’PB) lBTTU"‘['SWSwLW—(In—S)W
(I, - 9] U'TB(R+B'PB) .

Since S = ( and

1,—S=UT "(PBR'B"P+P—dP/da) T 'U=0,
0<I,—S<I,, W is
nonsingular and bhoth U and T are positive definite. Both
W> 0 and 0</,—S</, imply that

positive-definite  because A is

W—(1,—SYWI,—S)=0. Therefore d_gjfl is positive sc-

mi-definite. | ]
From Theorem 2 and Lemma 2, it is noted that 1)
unlike the continuous-time case, both ¢4 andup are not

necessarily small even though the ratio of Q to R tends
to infinity, 2) the smallero,(P;) ando,(A.) are, the

larger ¢4 is, and 3) when the system matrix A is stable,
the smaller 0,(K) is, the larger pg is.

It is known that the closed loop poles of the
discrete-time LQR tend to the inside the unit circle
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mages of the open loop zeros o the orgin as the ratio
Q to R approaches intinitey 11210 1 there s no finite open
loop zero, the closed Toop poles go to the origin as o
Since g A AL AT D e de

teneds 1o infimy,

creases as the clgenvalues of A o 1o zero. Ttoas also
known that the solution of the Lyapunoy cquation )

can be written as [13]
A ()

Soo o (P deereases ax the cigenvaluese of - AL go 1o
zoro and 1t Is finite even tor very o small KO the svstem

>

matrix A stable. From these facts and Lenuna 20 we can

obtam the following corollary.
Corollary 1 : 1y increases o= the ratio ol O to R

increases il there 1= no Hnite open loop zero.

D imereases as the ratio of Q o Rodecrenses if the

System matrtxs A s stable.
The results in Corollary 1

robustness against parameter

erease
thit
[Teh snd g have the same

can be atilized 1o

variations, [tois noted

bhoth z¢,  defined 1 section

property with respect 1o weighting matrices, e, those

merease as the rato of Q o R decreases. Therelore the
minnem singuwdar value of the return difference matiis
<onsed as o miecasure lor robustness when the modeling

crror exists n the mput matis onlv, When both 8.1 and

o3 wre present simultancousiv, 1tos not clear whether
the robustness nereases or not since both I and gy
mercase as o the ratio of Q to R ncrcases. Dot 1he

robustness when both maodeling ervors exist at the sane
e is guaranteed oo some extent since Nis finite even
when the ratio of Q 1o Rois very large. The propertics

ol Corollary T are tHustrated by the Tollowing example.

Example 2 :We consider a svstem and  welghting
matrices as follows
{! | ()
L] ]
[ n.an 0 } ’ I
Co [ 10) . @ «’Comd KoL
Then open loop poles are 08 wnd 07 and there s o

100 TODO0, ¢

b

2151100 106500,

When o andd

Cand 0536600, g,

open loop zero. 001 1,
O 19455, 085270,
001971, and 061350, respectively,

nereases and g,

Ivom this example, we know that gy

decreases as ¢ mereases. Bt anlike the comtimuows tine

case, e is not necessarihvosmall even for Loge .

V. Conclusions

I this paper, the general methods 1o nnprove  the
<tabilitv robusmess of the discrete time TOR i hoth the
frequiency domain and the hne domain were suggested.
Byousing several properties of the ARE solution. 1t was

that
ditference matrix
ratio of Q to R
ol 108, 2 and phase margins of 600 can be achieved
F.OR

matrices 11 the svstem matris A is stable.

shown the minimumn singular value of the return

can heincreased by decreasing the

By ousing this method, the gain margin

i the  discrete tme with  specific weighting

the robustness  against modeling  ervors, 1t wies

Ut

IFor

shown unlike the continuous time TOR, the vobu

KOt - AiSa - AIABEISSt =2A M1 & M235 1995 12
sess for bothad and 42 15 nol necessarily poor oven
for large Q or smiadl R0t was also shown that the
stabihity robustness bound Tor a:4 inercases as the ratio

of QO to R goes to anhity if the open loop svsten has

no  finite zero. The  stabiline robustness hound for a/3

increases are the ratio of Q) to R decreases 1 the svstem
mateis N =tables oo noted that under this condinon, the
]vl)]'t}/)‘

I

method 1o improve the <tabibiy robostness bound

is the sime a= the method 1o inerease the

singular value ol the return difference matris.

The methods o improve the stabtlity: robustness= m the
Nequency and e domam of this paper are: believed o
bre usetud for the robus=t design of the diserere e T.OR.

)

The discrete time LOR TR method TTH i~ rarcly osed

hecause ol the poor robistness of the diserete time 1O

bt ot can be uscful o the LOR s designed by the
methods suggested o this paper. The propetrties of - the
stabiliny: robustness hounds when o:4b and 56 exist o the

same tme need to bhe avestigated e detaal
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