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Weight Modification of
Recurrent Neural Network by Decorrelation
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1. Spurious states problem with associative
memory

Dynamic associative memories[1] have been studied for
correct restoration of noisy
images. The correlation learning rule has generally been
employed for the training of such networks. Like other
neural network paradigms, the recurrent neural networks
are apt to be trapped at so-called spunous states. The
spurious states, along with the trained states, form the
basins of attractions on the energy surface during the
process of learning so that the output state is stabilized
at either the trained state or the spurious state
whichever is closer to the initial state. The problem of
such local minima has been major obstacle for reliable
applications of neural networks. There have been many
approaches[2.3.45] to reduce the chance of being trapped
in such undesirably stable states. Most of the approaches
try to force the output from the shallow local minima by
stochastic methods or to modify the correlation matrix
using Hopfield's unlearning concept[6]. Although, such
methods achieve certain improvements on the chance of
correct retrieval, they are subject to face criticisms: as
far as there are local minima whose depths and basin
sizes are unknown, the stochastic methods and the
unlearmning schemes and their parameter adjustment
processes are not pre-determined for the unsupervised
learning paradigms. And their computational complexities
are immense. Moreover, some of the desirable final
states may be less stable than a spurious state, in which
case, a desirable output state may also be abandoned by
the effort to eliminate the spurious states.

The correlation learning rule doesn’t guarantee that the
energy level of a trained state is lower than any of
those of the spurious states, or a basin of attraction of a
trained state is broader than any of those of the spurious
output states.

Therefore, in order to eliminate the chance of having
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spurious outputs completely, the undesirable minima must
be identified and removed selectively to have rescul-
ptured energy surface. This paper presents a principle
way to prevent undesirable local minima which com-
monly degrade the performance of recurrent neural
networks. This method modifies the energy surface to
prohibit the undesirable minima. As was mentioned, most
of the existing stochastic methods focus on overcoming
which are already established by
learning rule. The anti-Hebbian learning
rule[12,13] employs the same idea of decorrelation in

the local minima

collective

order to decline or compensate certain perception (in
human brain or in artificial memory) which 1s otherwise
overemphasized. However, in that case. the decorrelation
any strong and persistent stimuli
are perceived with decay in magnitude which 1s
interpreted as fatigue[l2] in human sensibility. Such
fatigues in human perception are purposive in many
circumstances while they are not so in other cases. In
other words, the existing schemes of anti-Hebbian (or
unleaming) leaming are
unspecified lability. The approach presented here is to
employ
which are not intended at the time of learning. This is
implementable by identifying the spurious states directly
from the training patterns as explained in section 3. The
existence of spurious states also affects the reliable
storage capacity of associative memory.
memory which has little or no spurious states should
have higher storage capacity. So, the improvements in
the radius of attractions or the probability of success
retrieval should be suggested
method. Some of the studies dealt with the improvements
on the storage density as well as the correct retrieval
rate for certain Hopfield-type networks[4,5].

is not done selectively:

decorrelation or subject  to

the unleaming concept to only those minima

The associative

re-examined for the

II. The stationary condition.

The dynamics of recurrent networks induce the outputs
of the networks to converge to a certain stable state
after a number of iterations when an initial input pattern
is given. Such stability is acquired due to the fact that
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the final state is one of the minima in terms of the
Lvapunov's energy. As was proved by J. Hopfield[7],
when the energy of an output state reaches its minimum,
the state becomes immovable - and stable. The condition
for stahility can be drawn from here. For simplicity sake,
the discrete-time update scheme will be considered here.
The output at time kt1 is
vi(k+1) = sgn( net, (k) )

N
net,(k) = lez/U;(k) for i = 1,2,...N
f=

where N is the number of output neurons
v, is ith component of output bipolar binary vector v,
1 when x=0

sgn(x) =
—1  when x<0

and the simplified energy E is: E= f%f 22Ty v v
< I 7

L

At stationary state,
v (k+1) = v,(k for al i
or, sgn(net;( k) = v;(k) (2)
Equation (2) holds if and only if the two terms neti(k)
and v;(k) are of same sign providing that the output

vi(k) has reached its saturation region of the activation

function. Thus, the condition for output v(k) to be stable:
¢ = vi (B> (ZTy0,(k) >0 forall i (3)
7

In this case of using sgni{x) function as the neuron
activation function, the stationary output state may not
be achieved by setting “VE(v) = 0 because every output
neuron may change its value end to end, that is. from
-1 to 1 or 1 to -1. Thus, the output states are
permissible only at the vertices of the hypercube and in
this  constrainded problem, the
minima appear on the boundary rather than inside the
hypercube where TE(v) = 0 is satisfied. However, the
VE(v) < 0 [8] should be met for a state v
not to change. This condition coincides with (3) as

optimization energy

condition v -

v (%):A% 1/,(27_] T; v). The synaptic weight ma-

trix T of the autoassociative memory is built by the
following formula:

T=3 2" (2™ —pl (@)
where p is the nurﬁngelr of training patterns, X, each of
which is superscribed by m.

This is the same as the auto-correlation matrix obtained
by Hebbian learning rule except that all of the diagonal
terms, Tii, become zero in this recurrent network. If p is
one, the synaptic weight obtained by (4) will do the
associative retrieval correctly. However, when p is large
enough, the superposition of correlation rule with respect
to every non-orthogonal training pattern causes so-called
crosstalk  term{8.9] deteriorate the con-
vergence rate or the radius of correct attraction. As the
result of this, the spurious states emerge. One kind of
such states occurs due to the fact that the dynamics and
the energy function of the recurrent neural network have
a perfect symmetry. Thus, the reverse (or complemented)
states of the training patterns become stable. However,
this kind of states may easily be identified and in-

which may
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tensionally prohibited by assigning any one bit of the
output vectors to known value. Other kind of spurious
states is caused by the superpositional nature of the
correlation learning and is a subset of the set of possible
stable states which are linear combinations of odd
numbers of the training patterns [9]. The actual spurious
states are then determined among the combination set by
the stationary given In (3). From the
observations 1s  conceived: the

conditions
above, a postulation
spurious states may be prohibited during the training of
input patterns by additional steps of compensation rather

than during recall process as after-the- fact remedy.

. Modifying the energy surface by decorrelation

As was noted above, it is always probable that the
recurrent neural networks output spurious states. The
first kind of spurious states can not mislead us if a sign
bit which is supposed to be positive for all the patterns
Is introduced. The second type of spurious states have
conventionally been treated by stochastic methods. But
such methods have fundamental
to pull the output states out of the existing basins of
attraction. Without question, a preventive method which
compensates the false minima would be more effective.

limitation as they try

Moreover, if every spurious state is canceled, perfect
retrieval with the upper-bound memory capacity would
be realizable. As the correlations between the pair of bits
of each training pattern are devoted to make the synaptic
weight matrix and establish the storing dynamics in the
recurrent neural network, the process can be reversed in
order to eliminate the false minima from the energy
landscape. This method of inhibitory learning is called
decorrelation here. For this method, the knowledge of the
hand at the time of leamning 1s

spurious  states  in

prerequisite. This condition is met by the two theorems:

Theorem 1) The spurious states of recurrent neural
network are composed
binations of odd numbers of the training
patterns[10].

Theorem 2) Any stationary output states of discrete-

network satisfy the

of linear com

time recurrent neural
conditions given in (3).

The decorrelation learning is to compensate the false
minima which are identified by the two theorems above.
For each false minimum, the weight matrix is modified
by AT :

aT; = — ilﬂszms}” (%)
where 1]
g  number of false minima
"

s™ ¢+ a false minimum
A ¢ decorrelation factor

The complete learning process of this method is given
in Fig. 1. The procedures implementing the two theorems
are much less complex ways to determine the spurious
states than determining the local minima by checking
and comparing the energy levels of all the possible
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output states of n-neuron. This is especially so as p<<n.
Speaking of the odd number combinations, it is
observed(11] that the linear combinations of three
patterns cover most of the probable stable states. That
is, checking with the combinations of more than three
patterns results less likely to find stable states. Thus, in
practical cases, the number of admissible states to check
for stable states is limited and the computational
complexity of this process become tolerable, especially
with the parallel hardware illustrated in Figure 2. This
method should not be confused with supervised
error-correction leamning because during the learning
process of Fig. 1, no actual recall process is exploited,
and the comparison with the training pattermns are not for
figuring out the errors between the actual outputs and
the desired outputs but for checking if the expected local
minima match with the training patterns.

————
i Training patterns
/"“" Correlation
learning
Modified W@———
T by
4 Theorem 1
R m———]
Set of possible minima
Carrelation
/ Learmning — by

Theorem 2
Compare with
Training patterns

Ali stable states

Decorrelation
Learning ___/

forgotten EXCaSHE
pattems? stable

Spurious states

Pattemns for recovery &‘—‘

End of modification

Fig. 1. Weight modification process.

Similar concepts of reversing the sign of covariance
learning rule are suggested recently. Kohonen constructed
a 'novelty filter’'[12] which learned to be insensitive to
familar features in its input to a recurrent autoassociator.
The ‘anti-Hebbian’ synapses have also been used for
lateral decorrelation of feature detectors[13,14]. A
phenomena of ‘unlearning’ was first introduced by
Crick[15] to explain the biological purpose of sleep in
human and animals as a period during which unneeded
information is erased and stored
compacted. Although it has not heen clearly known what
active mechanism in human brain causes such
reconfiguration of memory or psychological response
patterns, it is generally understandable that any
particular memory or passion socothes over passage of

information  is

time. Soon after then, J. Hopfield presented the
mathematical modelling of ‘unlearning’ in collective
neural network by which the memory function is

improved by the equalization of accessibility and the
suppression of spurious memories[6].
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The idea of ‘unlearmming’ is extensively studied and
practically employed here with the aids of stationary
conditions solve a set of

and a special network to

inequalities.

IV. Numerical example
Suppose a S5-neuron, fully connected recurrent neural
network to train three bipolar binary vectors, x1, X2, and
x3. The correlation learming rule produce the initial
weight matrix T.

xt = -1 11 -1 -1
x2 = -1 1 -1 -1 1
x3 = 1 1 1 -1 1
0 -1 1 1 1
-1 0 1-3 1
T= 1 1 0-1-1
1 -3 -1 0 -1
I 1-1-1 0

The linear combination of the three training vectors
gives a spurious state candidate, s.

s=sgn( x1 +x2+x3)=(-111-1 1)
As any two of the three training vectors are two
Hamming distance apart in this case, s 1s equidistant
from the three input vectors. The stabilities of four
vectors are verified by the stationary criteria given in (3).
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Fig. 2. Stability verification network.

The network in Fig. 2 is used to verify an output v

being stable, that 1s,

(X T,v,;). The zero detector outputs one when all of
J

every v, being equal to sgn

the inputs are zeros. This is when all the ci are positive
and the output state v(k) is stable. The four stable
states identified here have the same minimum energy
level of -6. In order to eliminate the false minimum at s,
decorrelation learning as in (5) is emploved to have

modified weight matrix T ' for 4 = 04.
6 —-06 14 06 1.4
-0.6 0 0.6 —2.6 0.6
T = 1.4 06 0 —06 —14
0.6 -2.6 —0.6 0 —0.6
1.4 0.6 —-14 06 0

Then, again, the stationary condition (3) is applied to
verify that spurious state is not any more stable (that is,
not a local minimum).

The values of ¢, defined in (3) are
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—-1.6<0.
Thus, it is unstable. And the energy of the spunious

state has grown from -6 to -2,

E, = %(22 Ty'sis;) = —2

ci=ci=ci—

Fig. 3 shows how the energy of the spuricus state, s, is
raised by the decorrelation leaming while the energies of
the rest of the states heing changed rather slowly. The
horizontal axis is the decimal representation of all the
possible 5-bit binary output vectors. The complements of
the vectors are not shown because of the symmetry. If
this  example dealt by the
anti-Hebbian learning rule[6,12], all of the stable states,
and s, are somewhat decorrelated and the
energy surface becomes less rugged, and eventually, the
spurious state will be removed. This is fine for the
purpose of smoothing any extreme tendency or temper
which is supposed to be diminished over time of sleep or
rest (for the case of human). Obviously, however, our
method of figuring out those unwanted attractors on the
energy surface and removing them selectively in the
course of learning is much effective
sense.

problem is existing
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Fig. 3. Changes in energy level of output states
after decorrelation leaming( A =0.4).

V. Conclusion

The local minima have been one of the serious
problems associated with recurrent neural networks.
Here, a principle way of preventing the undesirable
minima in dynamic associative memory is presented.
This method employs the idea of unleaming in order to
eliminate known false minima from the energy landscape.
There have been methods of reversing the learning
process for various purposes. But, unless the undesirable
states are known in advance, the unlearning can not be
carried out properly. The method of determining the
spurious states as the learning progresses is introduced
in this paper and is implemented to solve the local
minima problem as well as to improve the memory ca
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pacity of recurrent neural network. The verification of
stability of states among the admissible set of states is
done at each iteration of weight modification by a simple
connectionist network., The method
thus efficient because of parallelism and effective because
of the states. The
experiments show how the energy levels of the spurious
states are raised by this method so that their basins of
attractions vanish.

presented here 1s

acquired knowledge of spurious
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