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Note on Behavior of a Coupled
Nonautonomous Ordinary Differential Equation
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I . Introduction

It is well known that for a linear nonautonomous
system such that x(#)=A()x(t), x(0)=1x, where x
(\)eR", =0 , the eigenvalue analysis is not sufficient
for determining the stability [11[8], i.e. the fact that the
real parts of all the eigenvalues of A(#H at every time
instant are bounded above by -8, & >0. does not imply
the stability of the time-varying system. A- pionecring
example of Markus and Yamabe [10] (see also [8], p.1&4,
Example 109) actually shows that the solution grows
without bound as ¢ —c even if the spectrums of A(#
remain at fixed locations in the open left-half plane for
all t=0. Several recent results for the exponential
stability of linear systems including infinite dimensional
systems can be found in [2][3].

For a nonlinear system two approaches are usually
taken in stability.  First the
Lyapunov’s direct method which analyzes qualitatively
the behavior of dynamic system byv utilizing the
Lyapunov function (resembling total energv in some
sense). And the Lyapunov's indirect
method which enables one to draw conclusions ahout a
nonlinear system by studying the behavior of a linear
system obtained through linearization. Furthermore if the
given system is nonautonomous, the assertion such as
asymptotic stability would be more demanding since it
requires that the derivative of Lyapunov function,

— W(#), is (locally) positive definite. However for special

determining one 1s

second one is

cases like autonomous or periodic system the invariance
principle (LaSalle’s theorem) is known to hold [8, p.156],
therefore it is possible to conclude asymptotic stability
even in cases where — W(#) is not locally positive
definite.

In this note the asymptotic convergence to zero of a
part of the solutions of a coupled nonautonomous system

isinvestigated. The coupled dynamic system is assumed to
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permit & Lyapunov function and the time derivative of
the Lyapunov function is negative semidefinite involving
only part of the state. Therefore uniform stability can
only be concluded from the Lyapunov's direct method [8,
p.148, Theorem 9]. Note also that the invariance principle
does not hold for general nonautonomous system. In this
note however the asymptotic convergence to zero of the
partial state of the coupled system will be shown with
additional assumptions, which are not restrictive, which
appear in the derivative of the Lyapunov function. The
contribution of the note is to show additionally the
asymptotic convergence to zero of first part of the state
vector of coupled system (1)-(2) below, otherwise only

uniform  stability could have been concluded by the
Lyvapunov method. An illustrating example for the
obtained results will be given.

Definition: z(» is said to be a solution of the
differential equation

z = fit,a), 2(¢) = z

where z:I=[r,r +a] —R", f:D=I<B—R" where
B= {zeR" | z—zll <b}. if (t,z2()eD for t <l and

z(t) satisfies the given differential equation for all ¢ 1.

- .
II. Main Results
Theorem: Consider a coupled nonautonomous system as

x = Atxy), 20 = x, (1)

y =gltx, v, W0) = (2)

where x=R", y=R”. The following assumptions are
made.

(i) A40,00=0. g(£0,0)=0.f and g are piecewise

continuous in ¢ and continuous in x and .
Furthermore f and g are locally Lipschitz in x and v.

(i) At e, <aNlxll +¢, V=0
where ¢ is a positive constant and ¢: R™>R" is bounded
for finite values of y.

(iii) There exists a functional V:R"xR"™™>R* such
that

Rllxl 2+l v < VOt 2, )< kg llx | 2R vl (3)

where k&, ks, ky, ky are positive constants.
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i) VO, x, v <320 0x D

where A1 s a4 continuous  Monotone  ncreasing
2 =0 . Then x(h

Remark: Note that the state vector in the  above

function with s () as o

theorem conststs ol two  components (v, v, Condition

s basicallv for the local existance and imgueness.

Condition G implies thar V0o 1= a0 positive delinite
|

and decrescent function. The right hand side of equation

LDoinvolves only o part of state vector v, hence the

cquation ¢ does not imply that Vo 1s Uocally)

positive  definite function. Therefore  the  asymptotic
<tability can not be concluded. Lastly condiion (i1) is
addiiomally  assumed i which v is 0 treated  as @

parameter i .
{ 20 = «tn

. . P
Proof : Defining 2= {x . v’ with

(] "D ) can be rewritien as

= It z) . 0 [ \‘}
Since Fois piecewise continuous i 4 and locally Lipschitz
inz due to the condition (1), by the standard local
existence theorem (see [1D there exists o unique solution
defined on an interval fr=1 0.7 for some 7o0. Also
the existence ol a Lvapunov function ¥V which is positive
definite and decrescent and its derivative along (1) -¢2)
heing <0 implies that o set £, = dz V=) ;2R s
positive invarient, oo cz(HT=y 0 =0, where 71w a
constant not depending on 1
[t the unique solution ol 1y ar tinme 4 starting with

initial state a0 at indtiad tme s be ol the form
X = xls) + ] Ao xto v Dl (<

Then we

SCH sy on R

and denote the salution as () = v, x(s), 8)
can define a two parameter family of map
as

SCHLsIx(s) = xCh xls) 8), Dmgui /o . )
the uniqueness and  continuous dependence of

(4 x(8), 9,

Then., by
the <olutions  x() — x(fx(s),s) on the triple
the mapping  SCA ) on K7 becomes an evolution process

such that [9, p.12]

CIISC-  ox(s) R R s continuous (right
contnuous al =8 )
(1) Sty =)0 xR R R 18 continuons

(i) SCs, sha(s) = x(s)
Civ ) SO Ox(8) = SCEH SO ox(s) . Tor all x(sye= RY
and 0=l p=lfoo,

We further note that the condition 1) i the theorem
mplies that
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where x(0) = S04,

Indeed, the conclusion o the theorem can he

SCH0)x, #~0 a1 >0 then

proven

by contradiction.  Suppose

there exists an >0 and an mbinite sequence 7, o such
that

PSS,y e,
constants

Now however =mall the & is there exisl
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Therefore taking norms on both sides of )
(0 s e sy e
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Applving the Bellman Gronwall s incquality vields
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for all (2s20.
Now without loss ol generality we can assume Ul
- /,>1{’M 0 we st =] ot %] £l then

ml( J )= \ 20 Cae Lebesgue  measure) and the

intervals  J 0 do not overlap, For ¢ o .
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where the second nequality above 1s obtained from (90,

Therelore we have
sl

for all =, -1 ¢ /M ] . Hence
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contradicting (7). Thus we must have  x(H) — 0 as
/o O, -
Example: Consider o miodel reference adaptive  control
of a scalar differentiad cquation. This example 1 well
documented in adaptive control literature, for example 5,
P05 or 17, p99l Ter the plant and reterence model be

VA (0 k(D
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X 1) = X (8) + lo ()
where subscripts p and m denote plant and model,

respectively, a, and &, are unknowm parameters of the
plant, #(# is the control input, @,<0, »{# is a bounded

reference input. The control objective is to design a
bounded control w(H which enables the plant
output x,(f) to follow the signal x,(#) generated from

Input

the reference model. The whole closed loop adaptive
system results in the following equations (see the
references cited above) as

(= (an+ k(D)) + kx (Dvi(D+ k1 (Dy(H)  (9)

y1(H=—sgn(k)x(H(x(8) +x,(D) (10)

vol B = —sgn(k)x( ) (D) (11)
where x()=x,(8) —x,(8, y,(H and »{() are adjustable
parameters in the controller, and »(# and x,(f) are
treated to be bounded exogenous signals. Obtaining (10)
and, (11), a Lyapunov function V:R—R™ as

Vixy v =5 G2 I+ 95) (12

differentiation of V with

respect to t along the equations (9)-(11) yields

Vix, v, v) = a,x (<0 . (13)
Note that equations (9), (10O)-(11), (12) and (13)
correspond to the equations (1), (2), (3) and (4),
respectively, in the theorem and satisfy all the
assumptions. Therefore by applying the theorem
}Lr;lx( /=0 can be shown,

has been considered. The

Remark: The convergence of x(£) to 0 as ¢ o in
adaptive control literature (see [5, p.99] or [7, p.99) has
been shown by applying Barbalat’s Lemma [11, p.211].

IM. Conclusions
In this note asymptotic convergence to zero of the
partial nonlinear
system with uniform stability has been shown. Con-
sidering that the invariance principle does not hold for

state of a coupled nonautonomous
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general nonautonomous system and that it is sometimes
difficult to obtain — V(¢ to be positive definite, the
obtained results could be
nonautonomous system since it can assert at least partial
convergence of the state.

useful in analysis of
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