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Synthesis of Optimum Broadband Null in Randomly
Perturbed Linear Arrays
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If broadband interference signals are incident at an array of sensor/antenna elements, it is
desirable to form a set of broadband nulls around the directions of the interference signals to
improve the array performance. An efficient way of generating a broadband null is to
synthesize a derivative null. The performance of a derivativev null in a constrained linear array
which is subjected to random variations with respect to array weight and element position is
discussed. Computer simulation results are presented.

estimate a desired signal corrupted by unde-

INTRODUCTION sired interference signals. Array procgssing _
techniques have heen applied in many areas

An array of antenna/sensor elements which include seismology [1], radar [2], and
yields an improved directivity compared to a sonar [3]. When random errors with respect
single element and is efficiently used to to array weight, element position, or input
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signal wave exist, their effects on the array

performance should be considered to obtain a
more practical solution. Maximization of the
exepected directivity or signal to noise ratio,
and minimization of output power with/with-
out constraints have been widely discussed
[4-7]. It was shown that the array perfor-
mance was degraded as the variance of
random errors increases. Also, It was shown
that a derivative null constraint in the side-

lobe yielded a broadband null appropriate for
eliminating a broadband interference signal
[89].

In this paper, the concept of a pattern
derivative is introduced in an optimal sense
in a randomly perturbed linear "array with
The effects
of the random varations of array weight

equispaced isotropic elements.

and element position on the expectation of
the first-order derivative of array factor and
its power response are analyzed and emplo-

yed in finding an optimum weight solution
for a broadband nulling problem. Without
loss of generality, it is assumed that the
average positions of elements are confined to
a one-dirmensional space, the directions of
incoming signals are confined to a two-dim-
ensional space, and the positions vary rand-
omly in a three-dimensional space.

In a narrowband linear array with N
equispaced isotropic elements on the X-axis

in the three-dimensional space, the random
variations of array weight and element
position can be expressed as

oY)

w,=c¢,tx,

and
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d,=ndu,+ o ,, forl < n £ N, (2

where the ¢, are the average values of

randomly perturbed complex weights w,, ndu,

are the average element positions, d, are
d is

the inter-element spacing with no random

randomly perturbed element positions,

error, #, is a unit vector on the X-axis,
and X, are independent random complex
variables for weight errors with mean zero,
and @ , are independent random vectors
for position errors with all having the same
statistical distributions. If it is assumed that
the cartesian components of ¢, are of
independent normal distribution with mean
zero and variances of o %/s, the marginal

probability  density  function for each
component is given by
-30
3 2o’
= for
p( p c) V%LG e H
¢ = xn, yn, and zn. (3)
Also it is assumed that all the arTay
elements are identical and distortionless and

If
random variations are not present in the

the incoming signals are plane waves.

arTay, the array factor is given by

e, @ 4

N
Hy(u) = nz=:1

where % = cosd , 6 is an angle from the

2

array axis k=T’ A is the wavelength of
the incoming signals, and j=v—1. It can
be shown that the power of thé nominal

(i.e., with no random errors) array factor is
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expressed as

|H2)|? = c"Pe, (5)

where P is an autocorrelation matrix of a

steering vector P given by

p=1[1 e .. eik(Nfl)du] T

G
™

C=[C1C2“' CN]T

and T and H denote transpose and complex

conjugate transpose, respeptively. If random
variations with respect to array weight and
element position are present, the array factor
is given by

N —; -
H(u)='§1w,,e e rdut p mtt+ @ 2 1—08) 8

It can be shown that the average array
output power is given by

E[ |Hw = P, ©
where
P= —la(i+ D, (10)
r= 8+ ¥ + 8% a1
dl=e o -1, (12)

H |x4%] =Ale,l?, forl<a<N,, (13)
I is an NXN identity matrix. In (13), it is

assumed that the variance of X, is

propartional to the power of €, with the

ratio of 7 for all % It is to be noted

that the # in (11) comprehensively
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represents the power of relevant errors.
A of synthesizing
broadband null is to put multiple point nulls

simple way a

within a spatial region of interest. To form
a L point nulls at #;, #,, ---, u; with a
unit gain constraint at u, we solve the

following constrained optimization problem.

Min
c

E [ [H(w?]

' 14)
subject to E[ p w] =1,
where P, is a perturbed steering vector
for the look direction (i.e., the direction of a

desired signal), whose #th component is

given by

[ ] o= eltmttentenll=d) g
and

w=[w w wyl? (16) -

It can be shown that the constraint in (14)
is evaluated as

2l = V1 + &,

where #. is a nominal steering vector for
the look direction, i.e,
jk &
[.ba] n = e m ]

an

(18
C is a nominal weight vector given by

u,=cos § ., and 6, is the incident angle

of a desired signal.

Using the method of Lagrange mltipliers,
it can be shown that the optimum weight
vector is given by



. |
1+ &£ s (19)

Cat = T pHpTp,

where

P= P+ Lrig (20)
= pph, (1)

b=10p t v 1, (22)

and

eikl(N-l)dm] T

pr=1[1e" .. (23)

It is assumed that the inverse of P exists.

Multiple point mulls are expeﬂment‘ed with a
16-element linear array with #» = 0.001.
The beam pattern with 11 point nulls
between 40 ® and 45 ° is shown in Fig. 1.
It is observed that the width and depth of
the broadband null are 6° and -66 db,

respectively, Synthesis of a broadband null
by the point null requires more point nulls

-5
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Fig. 1 Beam pattern for a 16-element linear

array with 11 point nulls for

40 ° and 45 °.

to achieve a better performance, which
results in more computaional load. A simple
way of forming a broadband null is to use a

pattern derivative,

AVERAGE PATTERN
DERIVATIVE

The first-order derivative of the nominal
array factor with respect to the directional

parameter 2 is given by

dH,(u

% = pic (24)

where

pa= [ jkde™ jigde™* . . jeNde™*] T
(25)

Also, the nominal squared derivative is

expressed as

dHn(u) |Z =

IT cfp,e, (26)

where the #th row and #Mth column of

P; matrix is given by
[ Pyl = (led) nme ¥~ 20

When the random varjations are present, the
first-order derivative of a perturbed array

factor is
N
A — 3 w0+ p i b )

e —i{ ndut p ut o Y l—uz}
(28
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Taking the expectation of (28) and
comparing the result with (24), we get the
following relationship.

E[ ag(u)]_ 1 9 H,(u)
du © Y1+s° ou

(29

To find the average squared derivative of
the array factor, we first evaluate the
squared derivative as

N N
l%‘lﬁ = ”gl-y‘:-lwnwubz[ nd+p M"'Tl‘":_ufpnn]

[ et ire-]

e il (n—m)du+(p o= 0 wdut (0 o= p w)V 1 =24

(30)
Taking the expectation of (30), we get

g 2Hu y _mp, (31)
where the #nth row and mth column of

P is given by

(kd)*n*(1+ 7 %)

n=m
S —m)du
[ Pl o= (h)orme——r 4= m,
1+0
1= nm= N,
(32)

Rearranging (32), P can be expressed as
1 2
P*mﬂﬂ: + (k)*r
_ (33_)
diag [ 1, 2%, 3%, -, M)} |
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and dzag [ ]
matrix whose diagonal elements are the
contents of the
broadband interference signals are coming
from different directions, we need to form a
set of derivative nulls at the angular regions

denotes a diagonal

brackets. If rnultiple

of the interference signals.

OPTIMUM WEIGHT VECTOR
FOR MULTIPLE DERIVATIVE
NULLS

If L pattern derivatives with gains of

a,, &, ***, @y are synthesized at

Uy, uy, ***, Uy with a constraint gain
B at the look direction, we need to solve
the problem of minimizing the squared norm
of the error vector between the derivative
gains and the derivatives of relevent array
factors at the specified locations with a
constraint gain at the look direction, which
is formulated as

Mo B [lel?]

subject to F[ .t’f-{:w ] =8 (34)
where
e = a — pw, (35)

[ﬁm] .= eikc(udu,+p,,+p.\/l-u=,). (36)

a= lay a a1 7 (37

b, = [pal Do .. paL] ) (38)

the #th component of the column vectors



A

D is given by

et p tiart P N—103 )

lpad » = ik=1(nd+pu-puﬁu:°'z)ﬂ
(39)
U, = COS 0 . and kc and kol are

E for the constrained and the /th pattern
derivative directions, respectively. Assuming
that ¢ and its complex conjugate ¢’ are

independent each other [10] and using the
method of Lagrange multipliers, the optimum
weight vector is given by

[ (1+a2)a— pa”P'mal ﬁ,].

.l P
e L TR

: (40)
It is assumed that P is nonsingular in (40).

For derivative nulls to be synthesized, «
need to be set to a null vector.

OPTIMUM WEIGHT VECTOR
FOR A SINﬁbE DERIVATIVE

I a broadband interference signal is
coming from a mnon-look direction (e, a
direction different from that of a desired
signal), we need to form a single derivative

null, Thus the @ and p, in (37) and (38)

become a scalar and an Nx1 steering
vector, respectively. Using a matrix inversion
lemma (11], the inverse of P is evaluated

as

N+ 7 (42)

and the #Mth component of P , is given by

[ ] n= ™™, forl<n<N
(43)

Substituting (41) into (40} with @=0 and fi=1,
the optimum weight vector which yields a
minimum mean squared error between a zero
response and the ﬁrst—ordelj derivative of the

array factor at %, with a unit gain constr-

aint at 2, is given by

Yife? d’z‘qg{ 1%%] ],,14,[ I%LN] b

(44)
where
[ 5] n=%. (45)
[ 5] n=—\%, (46)
and
jhondu,

[ 5] .=¢ , forl s n< N 47
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From (44), it is shown that the optimum
weight vector is obtained by scaling
operations with the diagonal matricies and a

nonothogonal projection with the J matrix.
Each component of the steering vector 2.

is scaled by 1/n, 1<»<N and

nonothogonally projected onto the 2, and

thus the resulting vector is a slanted version

of the complement of £, Then the

components of the resulting vector are again
scaled by 1/# factor and a relevant

constant such that the unit gain constraint is
satisfied,

SIMULATION RESULTS

A 3-sensor linear array is used to evalua-
te the performance of the dervative null
constraint, It is assumed that the spacing

between neighboring elements 4 is half the

wave length comresponding to the array
center frequency and the frequencies of the

desired and interference signals f, and f£.

are the same as the array center frequency.
The derivative gain @ at the interference

direction is set equal to zero and the constraint

1/V1+& such

that a unit gain is maintained at the look

gain A is assumed to be

direction. Then the matrix P is given by
1+7r 2¢™™ 3o i
F= 2™ 4(1+7) 6e ™ | .(48)
3e®™  ge™ 9(1+9#)

When the incident angles of the desired and
broadband interference signals are 90° and
60° from the array axis, respectively, the
¥ = 01, 001, 0001 are

plotted in Fig. 2. It is observed that each
beam pattern is almost the same, ie., the
derivative mull is not much sensitive to

beam patterns for

random variations. The reason for this phe~
nomenon is due to the fact that the two

diagonal matrices rotate the steering vector
b. such that the nonorthogonal projection

does not affect the overall performance
significantly as indicated in (44). One way
to improve the broadband nulling performan-
ce is to add a point null to the derivative
null. This can be done by modifying the
correlation matrix in such a way that it is
added by the correlation matrix related to a
point null. Then the resulting comrelation
matrix is given by

{0k
-zl
=301

—0r

=0

24 4‘9 5:7 N 153 ki \-';D !‘."J 130
rrgiz (degress)

Fig. 2 Owverlapped beam patterns: a 3-element

linear array by a derivative null at 60 °

for # = 0.1, 0.01, 0.001.



P= P+ P, +1 (49)
where
P, = pp”, (50)

and P is the same as in (6). The resulting
It is
nulling

beam patterns are shown in Fig. 3.
that the  broadband
performance improves as the random error
decreases. It is to be noted that if a
higher-order derivative null is added, the
null width becomes broader.

shown

t @ 47 1] a 123

182

engis (Sopteas)
Fig. 3 Overlapped beam patterns: a 3-element
linear array by a derivative null plus a point null
at 60° for » = 0.1, 0.01, 0.001.

CONCLUSIONS

The performance of the pattern derivative
is discussed in a linear array which is subj-
ected to random variations of array weight
and element position. A signle and multiple

ekl
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derivative nulls are synthesized with a-con-
straint gain at the look direction to counter-
act broadband interference signals. It was
shown that the derivative null was not
sensitive to the random errors. The mulling
performance imiproved by employing the
derivative null with a point null such that
the derivative null becomes deeper as the

random variations decrease.
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