CGE와 TRFGE 기법으로 얻은 뇌기능 영상에서 혈류효과와 자화율 효과의 해석

Analysis of Inflow and Susceptibility Effects in fMRI Obtained by CGE and TRFGE Techniques

  • 노용만 (대전대학교 컴퓨터공학과) ;
  • 정순철 (한국과학기술원 정보 및 통신공학과) ;
  • 조장희 (한국과학기술원 정보 및 통신공학과)
  • 발행 : 1995.12.01

초록

Tailored RF 경사자계 영상법을 이용하여 혈류효과를 배제한 자화율 효과만의 뇌기능 영상을 얻을수 있었다. 일반적인 RF를 이용한 경사자계 뇌기능 영상법은 빠른 경사자계 영상법으로 인해 정맥뿐만 아니라 동맥에서의 혈류효과와 $T2^{*}$ 효과가 합쳐진 영상을 얻게되는 반면, tailored RF를 이용한 경사자계 영상법은 산소소모와 관계된 자화율 변화에 의한 뇌기능 영상을 얻을 수 있었다. 본 논문에서 tailored RF를 이용하여 뇌기능 영상에서 자화율효과와 혈류효과를 명확히 구분할 수 있음을 보였다. 그리고 실험결과로 얻은 신호는 충분히 크고 산소 소모의 변화를 보다 더 정확히 표현하므로 지금까지 다른 경사자계 영상법으로는 어려웠던 뇌기능 영상에서 정량화된 산소 신진대사 연구의 가능성을 보여주었다.

Functional imaging based on the susceptibility only is achieved by separation of the susceptibility effect from the mixture of flow effect by use of a tailored RF pulse in conjunction with gradient echo sequence. Using the tailored RF pulse the susceptibility enhanced functional imaging appears to be explicitly related to the deoxygenation processes, while in the conventional gradient echo technique functional contrast on $T2^{*}$ effect images appear to be mixed with a significant fraction of blood flow (in- flow) signals of both arterial as well as venous bloods due to the nature of the fast sequence employed with the gradient echo technique. In this paper, using the tailored RF pulses, one can unambiguously separate the susceptibility and flow effects in functional imaging. Since the signal obtained can be made sufficiently high and represents oxygenation process more accurately, it seems possible to study quantitative oxygen metabolisms in brain function hitherto difficult to do with other gradient echo techniques.

키워드

참고문헌

  1. Magn. Reson. Med. v.28 NMR Venography Using the Susceptibility Effect produced by Deoxyhemoglobin Z.H.Cho;Y.M.Ro;T.H.Lim
  2. Magn. Reson. Med. v.28 A New Frontier of blood Imaging Using Susceptibility Effect and Tailored RF pulses Y.M.Ro;Z.H.Cho
  3. Magn. Reson. Med. v.29 Functional mapping of the human visual cortex at 4 and 1.5 Tesla using deoxygenation contrast EPI R.Turner;P.Jezzard;H.Wen;K.K.Kwong;D.Lebihan;T.Zeffiro;B.Balaban
  4. Proc. SMRA, 12th Annual Meeting Functional brain imaging using blood flow changes Z.H.Cho;Y.M.Ro;J.B.Park;S.C.Chung;S.H.Park
  5. Magn. Reson. Med. v.29 Functional MRI of human brain activation at high spatial resolution J.Frahm;K.Merboldt;W.Hanicke
  6. Proc. Matl. Acad. Sci. v.89 Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation K.K.Kwong;J.W.Belliveau;D.A.Chesler;I.E.Goldberg;R.M.Weiskoff;B.P.Poncelet;D.N.Kennedy;B.E.Hoppel;M.S.Cohen;R.Turner;H.Cheng;T.J.Brafy;B.R.Rosen
  7. Proc. Natl. Acad. Sci v.89 Intrinsic signal changes accompanying sensory stimulation:functional brain mapping using MRI S.Ogawa;D.W.Tank;R.Menon;J.M.Ellerman;S.Kim;H.Merkle;K.Ugurbil
  8. Proc., SMAR, 12th Annual Meeting Cautionary remarks on the role of veins in the variability of functional imaging experiments J.V.Hajnal;A.Oatridge;J.Schwieso;F.M.Cowan;I.R.Yong;G.M.Bydder
  9. Magn. Reson. Med. v.26 A fast gradient-recalled MRI technique with increased sensitibity to dynamic susceptibility efffects C.T.W.Moonen;G.Liu;P.van Gelderen;G.Sobering
  10. Science v.261 Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness S.G.Kim;J.Ashe;K.Hendrich;J.M.Ellermann;H.Merkle;K.Ugurbil;A.P.Georgopoulos
  11. Magn. Reson. Med. v.16 S.Ogawa;T.Lee
  12. Book of Abstract, 11th Annual Meeting, SMRM C.E.Ster;K.K.Kwong;J.W.Belliveau;J.R.Baker;B.R.Rosen