DOI QR코드

DOI QR Code

인공위성영상을 이용한 교통량측량 자동화

Automatic Traffic Data Collection Using Simulated Satellite Imagery


초록

최근 안전성과 경제성을 고려한 교통자료획득 방법으로 인공위성 영상자료를 사용하는 기술이 논의되어졌다. 본 논문은 인공위성영상을 이용한 고속도로 교통량 측정 자동화에 관한 연 구로서, 현재 사용되고 있는 교통량 측정방법의 단점 및 문제점을 평가, 분석하였으며, 본 보고서 에서 제안된 인공위성영상을 이용한 방안의 적용 및 가능성을 연구, 분석 하였다. 기존 인공위성 영상자료의 해상도가 교통자료획득에 적합하지 않으므로, 사진영상에 제안된 방 안을 도입하여, 실효성에 바탕을 둔 적용 여부를 검증하였다. 차량종류 및 교통량 측정에 필요한 인공위성영상의 해상도를 구하기 위하여 세 단계 (1m, 2m, 3,)의 사진영상해상도가 검토되었으며, 본 연구에서 제안된 일련의 영상처리 결과를 분석하였다. 전색성(panchromatic) 영상에서 도로와 차량의 반사율이 유사함으로, 도로상에서 차량을 탐지하 기 위하여 차량의 반사율을 이용하지않고 차량그림자의 반사율을 이용하였으며, 두가지 처리방법 이 제시되었다. 또한 차량종류를 구분하기위하여 여러가지 형태계수를 개발, 적용하였으며, 처리 과정을 상세히 설명하였다.

The fact that the demands on traffic data collection are imposed by economic and safety considerations raisese the question of the potential for complementing existing traffic data collection programs with satellite data. Evaluating and monitoring traffic characteristics is becoming increasingly important as worsening congestion, declining economic situations, and increasing environmental sensitivies are forcing the government and municipalities to make better use of existing roadway capacities. The present system of using automatic counters at selected points on highways works well from a temporal point of view (i.e., during a specific period of time at one location). However, the present system does not cover the spatial aspects of the entire road system (i.e., for every location during specific periods of time); the counters are employed only at points and only on selected highways. This lack of spatial coverage is due, in part, to the cost of the automatic counters systems (fixed procurement and maintenance costs) and of the personal required to deploy them. The current procedure is believed to work fairly well in the aggregate mode, at the macro level. However, at micro level, the numbers are more suspect. In addition, the statistics only work when assuming a certain homogenity among characteristics of highways in the same class, an assumption that is impossible to test whn little or no data is gathered on many of the highways for a given class. In this paper, a remote sensing system as complement of the existing system is considered and implemented. Since satellite imagery with high resolution is not available, digitized panchromatic imagery acquired from an aircraft platform is utilized for initial test of the feasibility and performance capability of remote sensing data. Different levels of imagery resolutions are evaluated in an attempt to determine what vehicle types could be classified and counted against a background of pavement types, which might be expected in panchromatic satellite imagery. The results of a systematic study with three different levels of resolutions (1m, 2m and 4m) show that the panchromat ic reflectances of vehicles and pavements would be distributed so similarly that it would be difficult to classify systematically and analytically remotely sensing vehicles on pavement within panchromatic range. Anaysis of the aerial photographs show that the shadows of the vehicles could be a cue for vehicle detection.

키워드

참고문헌

  1. Unpublished Ph. D. dissertation Design and simulation of a real-time mapping satellite for the Kingdom of Saudi Arabia Al Obaida,A.I.
  2. Computer and Robot Vision Haralick,R.M.;Shapiro,L.G.
  3. Technical Report TR 91-2 Evaluation of image processing technology for application in highway operations Hockaday,S.
  4. Final Technical Report Conceptual design of an automated mapping satellite system (MAPSAT) Itek
  5. Photogrammetric Engineering and Remote Sensing v.56 no.12 Characteristics of remote sensors for mapping and earth science applications Light,D.L.
  6. The final report The feasibility of traffic Data Collection Using Satellite Imagery McCord,M.R.;,Merry,C.J.;Bossler,J.
  7. Traffic Engineering Control v.19 no.3 Polus,A.;Levneh,M.;Borovsky,S.
  8. Photogrammetric Engineering and Remote Sensing v.47 no.2 Map projections for satellite tracking Snyder,J.P.