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A NOTE ON TRANSIENT SOLUTIONS
FOR CONTINUOUS TIME MARKOV CHAIN

YaNG W00 SHIN

ABSTRACT. We suggest an improvement of the algorithm in [2] for cal-
culating the transient solutions for continuous time Markov chain with
countable state space.

1. Introduction

Hsu and Yuan (2] suggested an algorithm for calculating the transient
solutions for continuous time Markov chain with countable state space
and arbitrary initial distribution by the uniformization technique. They
[3] also presented an algorithm for the first passage time for continuous
time Markov chain with countable state space based on the results of
[2].

In this note we state the algorithm in [2] and then suggest an improve-
ment of the algorithm and finally check its effectiveness by the numerical
example.

Consider the continuous time Markov chain {X(#);t > 0} on the
state space £ = {0,1,2,---} with infinitesimal generator Q = (gi,).
Suppose 0 < ¢ = sup;ep{—qi;} < oc, and let P = I + %Q where [
is the identity matrix. Let pi(t) = P(X(t) = i), i € E and p(t) =
(Po(t), p1(t), p2(t),--+ ). Then by uniformization technique (for example
see, Ross[4, p. 280]), p(t) is given by

=0
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where

7(0) = (70(0), 71(0). w2(0), -~ ) = p(0)

m(n) = (mo(n),mi(n)yma(n), - ) =x(n—-1)P, n = 1,2,...

To calculate p(t), Hsu and Yuan [2] suggested the following algorithm.
e Algorithm
Step 1. For given error ¢ > 0, T > 0 and ¢ > 0, compute L =
max{1, “?2} +eT + T
Step 2. Set ¢ = 6/L, and M = max(2[ceT], [logy(1/€)]), where |[z] is
the integral part of a;
Step 3. Generate Ny, N; . Na, - . Ny, by the following recursive formu-
las:

Z 7;(0) <€
j=No+1

o

Z Py < €, [)S?'Sj\?llwb n = 12»”' 5‘7\/17
j=1vn+l

where p;; is the (z,7)th entry of the matrix P

Step 4. Compute 7;(n, N,),n =0,1.2,.-- M by the following formu-
las;

m(0) HO0<j <Ay

0 if ) >Ny +1

Z,\__"O"' miln — LN, )py; f0<j <N,

0 if ) > N, +1;

mi(0; No) = {

mi(ny N,y) = {

Step 5. To approximate p;(t), t € [0.T], compute p; t|M), where
A (ct)"

. Iy = ¢t - Ny
pi(t|Al) = ¢ Z“_,(n,]\”) —

n=y

Then the following is obtained

0 <ps(t) —p;(t|AL) < Le = 6. tel0.7], j€ E.
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REMARK. Note that the amount of operations in calculating p;(¢|M)
severely depends on the constants Ny, Ny, --, Nas. Precisely speaking,
to calculate w(n; N,), n = 1,2,--- M, the necessary number of multi-
plications is NoN;y + N1 N, + -« + Naj_1 Nas. For a given error § > 0,
we see from the definition of the sequence {N,,n > 0}, that as L in-
creases, € > () decreases and hence N, and M increase. Hence it is very
important to reduce the constants L and M.

In the following section, we give better constants L and M, and
present a numerical example for its effectiveness.

2. Improvements and numerical example

Let € > 0 and ¢TI > 0 be given and A is a constant satisfying

Myl
% < €. In the procedure of determining the constant L, Hsu and
Yuan [2] used the estimation
= ()t
-t o g
(1) € Z 7 <ec', forall t € [0,T).
k=AM+1

Here we derive tighter estination than (1). It is well known that when
we expand the function €' by Taylor series, for any integer n, there is

a £ € (0,t) such that Zkof;”H 5—%1— = ((C':j::),l e¢'. Hence we have that for
each t € [0, 7],
o n A +1 M+1
s 1 T

(2) e—Ci Z (( ') _ (i[) - 'C—c(t—f) < (;I) i < €.

it n! (M + ) (. -+ )
Using (2) instead of (1) in th( pmof Theorem 2.4 of [2], we can obtain
smaller number L* = max{1. } + ¢T + 1 than L = max{1, (CT) =1+

cT +CT

Now we suggest an improvement for /. For a constant M with

% < €, Hsu and Yuan [2] take M (e) = max(2|ceT|, [log,(1/€)])

741
by the Stirling’s formula for n!. Let A *(¢) = min{n; -—(Ij)r—l—),— < €}. Then
M?™(€) can be easily calculated by the formula

"

M*(€) = min{n - 1; Z log kb > —log =+ nlog(cT)}

k=%
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and clearly M*(e) < M (e).

For the numerical example. we consider the M~ /M1 queue with
queue length dependent arrival rates and service rates, whose special case
is the M/M/1 queue with balking and A/M/1 queuc with reneging (for
example, see Gross and Harris (1]). When there are n customers in the
system, customers arrive in batches according to a Poisson process with
rate A, and the service rates of the server is to Leta, = P(X =1),1> 1
be the distribution of the batel size. Then the queue length process
{X(t),t 2 0} is a Markov chain with infinitesimal generator

—-/\0 /\()CL] /\(J(lz /\[)(l;; /\()CL4
M1~ + Ay Ara ALay Aag
Q= 0 2 ~(p2 + A2) Azay Ayay

0 0 /13 (g3 +A3) Az

When ap, = (1 —a)a" 1.0 > 1 and A\, = %(1 4 e nalwy fn = p(2 —
e‘_"“/“), n 2 0 with gy = 0, we will compare (L. M and (L*, M*) for
the transient distribution of X (#). Taking ¢ = 24+ A 2 sup{ A+ pn,n =
0,1,2,---}, the (7,5 )th eutry of the matrvix P = J + %Q are given by

0 ify<i—1

E(2—emralny ifj=1i-1
PUT) 1= MO 2 2 (A2 - o) i =

%?’,\(1 + e N1 — gyl ! ifj >

and we have for + > i/,

= A —ta/p k—i—1
21),]:7((1+( z a .
J=k

o . .
Hence 72, pi; < € is equivalent to

1 26(:
3 E>i4+1 g . ‘
(3) it le log « l()\.’(/\(1 + e““—‘/ll))
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Let A = 2,0 = 0.5.a = 0.5.a = 0.05. Then we get ¢ = 3 and the
condition (3) becomes

14 .m0
B>i+1—log,e+log, (—+3 )

Since —1.6 < log, (5'8—;—2) < —0.5, we take for each i, k =i+ [0.5 —
log; €], where [z] is the smallest integer not smaller than «. Let R(e) =
[0.5 — log, €] then we have from the structuie of the matrix P that
Nip=No+ kR(e),k =0.1.2,---

Numerical values for (L*. /") and (L, M) are given in table. Table
shows that the significant improvement L* of £ save a lot of computa-

tional task and memory.

TABLE. Nunerical Resuits
(6=00001,A =21 =005.0=0.50a=0.05 and ¢ =3 )

L ¢ = &/ L AMie) M*(¢) R{e¢)

L e =6/ Mie*) AM*(e*) R(e*)

T=1 27.5855 3.62500 x 107 18 15 19
8.5 117647 x 10-3 16 14 17

T=5 3.6291 x 109 3.0589 x 190—41 31 58 36
128.5 T.7821 x Jo~7 81 50 21

T=10 1.0636 x 1013 9.35762 x 1013 163 112 58
481 2.079 x 19—7 163 92 23

T=15 3.4934 x 101Y 2.8G252 x 10— 24 166 79
1058.5 914733 x 103 244 134 24

T =20 1.1420 x 10°° 8.75651 x 1071 396 219 101
1861 5.37346 x 108 326 175 25

References

1. Gross, D. and Harris, C. M. FPundamentals of Queueing Theory 2nd ed., Joln
Wiley & Sous, 1985,

2. Hsu, G. H. and Yuan, X. M., Transwent solution for denumerable-state Markov
processes, J. Applied Probability 31 (1994). 635-645.

3. Hsu, G. H. and Yuan, X. M., Itrst passage tunes and their algorithins for Markou
processes, Stochastic Models 11 (1995}, 195-210.

4. Ross, S. M., Introduction lo Probability Models, 5th edition, Academic Press.
1993.



980 Yang Woo Shin

Department of Statistics
Changwon National University
Changwon 641-773, KOREA



