A NOTE ON TRANSIENT SOLUTIONS FOR CONTINUOUS TIME MARKOV CHAIN

YANG WOO SHIN

ABSTRACT. We suggest an improvement of the algorithm in [2] for calculating the transient solutions for continuous time Markov chain with countable state space.

1. Introduction

Hsu and Yuan [2] suggested an algorithm for calculating the transient solutions for continuous time Markov chain with countable state space and arbitrary initial distribution by the uniformization technique. They [3] also presented an algorithm for the first passage time for continuous time Markov chain with countable state space based on the results of [2].

In this note we state the algorithm in [2] and then suggest an improvement of the algorithm and finally check its effectiveness by the numerical example.

Consider the continuous time Markov chain $\{X(t); t \geq 0\}$ on the state space $E = \{0, 1, 2, \cdots\}$ with infinitesimal generator $Q = (q_{ij})$. Suppose $0 < c = \sup_{i \in E} \{-q_{ii}\} < \infty$, and let $P = I + \frac{1}{c}Q$, where I is the identity matrix. Let $p_i(t) = P(X(t) = i)$, $i \in E$ and $p(t) = (p_0(t), p_1(t), p_2(t), \cdots)$. Then by uniformization technique (for example see, Ross[4, p. 286]), p(t) is given by

$$p(t) = e^{-ct} \sum_{n=0}^{\infty} \pi(n) \frac{(ct)^n}{n!}, \quad t \ge 0,$$

Received August 14, 1995. Revised September 16, 1995.

¹⁹⁹¹ AMS Subject Classification: Primary 60J27, Secondary 60K25.

Key words: uniformization technique; transient solutions; transient queue length distribution.

where

$$\pi(0) \equiv (\pi_0(0), \pi_1(0), \pi_2(0), \cdots) = p(0)$$

$$\pi(n) \equiv (\pi_0(n), \pi_1(n), \pi_2(n), \cdots) = \pi(n-1)P, \ n = 1, 2, \cdots.$$

To calculate p(t), Hsu and Yuan [2] suggested the following algorithm.

• Algorithm

Step 1. For given error $\delta > 0$, T > 0 and c > 0, compute $L = \max\{1, \frac{(cT)^2}{2}\} + e^{cT} + cT$;

Step 2. Set $\epsilon = \delta/L$, and $M = \max(2\lfloor ceT\rfloor, \lfloor \log_2(1/\epsilon)\rfloor)$, where $\lfloor x\rfloor$ is the integral part of x;

Step 3. Generate $N_0, N_1, N_2, \dots, N_M$ by the following recursive formulas:

$$\sum_{j=N_0+1}^{\infty} \pi_j(0) < \epsilon$$

$$\sum_{j=N_0+1}^{\infty} p_{ij} < \epsilon, \quad 0 \le i \le N_{n-1}, \ n = 1, 2, \dots, M,$$

where p_{ij} is the (i,j)th entry of the matrix P;

Step 4. Compute $\pi_j(n, N_n), n = 0, 1, 2, \dots, M$ by the following formulas;

$$\pi_{j}(0; N_{0}) = \begin{cases} \pi_{j}(0) & \text{if } 0 \leq j \leq N_{0} \\ 0 & \text{if } j \geq N_{0} + 1 \end{cases}$$

$$\pi_{j}(n; N_{n}) = \begin{cases} \sum_{i=0}^{N_{n-1}} \pi_{i}(n-1; N_{n-1}) p_{ij} & \text{if } 0 \leq j \leq N_{n} \\ 0 & \text{if } j \geq N_{n} + 1; \end{cases}$$

Step 5. To approximate $p_j(t)$, $t \in [0, T]$, compute $p_j(t|M)$, where

$$p_j(t|M) = e^{-ct} \sum_{n=0}^{M} \pi_j(n; N_n) \frac{(ct)^n}{n!}.$$

Then the following is obtained

$$0 \le p_j(t) - p_j(t|M) < L\epsilon = \delta, \quad t \in [0, T], \ j \in E.$$

REMARK. Note that the amount of operations in calculating $p_j(t|M)$ severely depends on the constants N_0, N_1, \dots, N_M . Precisely speaking, to calculate $\pi(n; N_n)$, $n = 1, 2, \dots, M$, the necessary number of multiplications is $N_0N_1 + N_1N_2 + \dots + N_{M-1}N_M$. For a given error $\delta > 0$, we see from the definition of the sequence $\{N_n, n \geq 0\}$, that as L increases, $\epsilon > 0$ decreases and hence N_n and M increase. Hence it is very important to reduce the constants L and M.

In the following section, we give better constants L and M, and present a numerical example for its effectiveness.

2. Improvements and numerical example

Let $\epsilon > 0$ and cT > 0 be given and M is a constant satisfying $\frac{(cT)^{M+1}}{(M+1)!} < \epsilon$. In the procedure of determining the constant L, Hsu and Yuan [2] used the estimation

(1)
$$e^{-ct} \sum_{k=M+1}^{\infty} \frac{(ct)^k}{k!} \le \epsilon \epsilon^{eT}, \text{ for all } t \in [0, T].$$

Here we derive tighter estimation than (1). It is well known that when we expand the function e^{ct} by Taylor series, for any integer n, there is a $\xi \in (0,t)$ such that $\sum_{k=n+1}^{\infty} \frac{(ct)^k}{k!} = \frac{(ct)^{n+1}}{(n+1)!} e^{\xi t}$. Hence we have that for each $t \in [0,T]$,

(2)
$$e^{-ct} \sum_{n=M+1}^{\infty} \frac{(ct)^n}{n!} = \frac{(ct)^{M+1}}{(M+1)!} e^{-c(t-\xi)} < \frac{(cT)^{M+1}}{(M+1)!} < \epsilon.$$

Using (2) instead of (1) in the proof Theorem 2.4 of [2], we can obtain smaller number $L^* = \max\{1, \frac{(cT)^2}{2}\} + cT + 1$ than $L = \max\{1, \frac{(cT)^2}{2}\} + e^{cT} + cT$.

Now we suggest an improvement for M. For a constant M with $\frac{(cT)^{M+1}}{(M+1)!} < \epsilon$, Hsu and Yuan [2] take $M(\epsilon) = \max(2\lfloor c\epsilon T \rfloor, \lfloor \log_2(1/\epsilon) \rfloor)$ by the Stirling's formula for n!. Let $M^*(\epsilon) = \min\{n; \frac{(cT)^{n+1}}{(n+1)!} < \epsilon\}$. Then $M^*(\epsilon)$ can be easily calculated by the formula

$$M^*(\epsilon) = \min\{n-1; \sum_{k=2}^n \log k > -\log \epsilon + n\log(cT)\}$$

and clearly $M^*(\epsilon) \leq M(\epsilon)$.

For the numerical example, we consider the $M^X/M/1$ queue with queue length dependent arrival rates and service rates, whose special case is the M/M/1 queue with balking and M/M/1 queue with reneging (for example, see Gross and Harris [1]). When there are n customers in the system, customers arrive in batches according to a Poisson process with rate λ_n and the service rates of the server is μ_n . Let $a_i = P(X = i)$, $i \ge 1$ be the distribution of the batch size. Then the queue length process $\{X(t), t \ge 0\}$ is a Markov chain with infinitesimal generator

$$Q = \begin{pmatrix} -\lambda_0 & \lambda_0 a_1 & \lambda_0 a_2 & \lambda_0 a_3 & \lambda_0 a_4 & \cdots \\ \mu_1 & -(\mu_1 + \lambda_1) & \lambda_1 a_1 & \lambda_1 a_2 & \lambda_1 a_3 & \cdots \\ 0 & \mu_2 & -(\mu_2 + \lambda_2) & \lambda_2 a_1 & \lambda_2 a_2 & \cdots \\ 0 & 0 & \mu_3 & -(\mu_3 + \lambda_3) & \lambda_3 a_1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}.$$

When $a_n = (1-a)a^{n-1}$, $n \ge 1$ and $\lambda_n = \frac{\lambda}{2}(1+e^{-n\alpha/\mu})$, $\mu_n = \mu(2-e^{-n\alpha/\mu})$, $n \ge 0$ with $\mu_0 = 0$, we will compare (L, M) and (L^*, M^*) for the transient distribution of X(t). Taking $c = 2\mu + \lambda \ge \sup\{\lambda_n + \mu_n, n = 0, 1, 2, \cdots\}$, the (i, j)th entry of the matrix $P = I + \frac{1}{\epsilon}Q$ are given by

$$p_{ij} = \begin{cases} 0 & \text{if } j < i - 1\\ \frac{\mu}{c} (2 - e^{-i\alpha/\mu}) & \text{if } j = i - 1\\ 1 - \frac{1}{c} [(\lambda/2 + 2\mu) + (\lambda/2 - 2\mu)e^{-i\alpha/\mu}] & \text{if } j = i\\ \frac{1}{c} \frac{\lambda}{2} (1 + e^{-i\alpha/\mu})(1 - a)a^{j - i - 1} & \text{if } j > i \end{cases}$$

and we have for k > i,

$$\sum_{j=k}^{\infty} p_{ij} = \frac{\lambda}{2c} (1 + e^{-i\alpha/\mu}) a^{k-i-1}.$$

Hence $\sum_{j=k}^{\infty} p_{ij} < \epsilon$ is equivalent to

(3)
$$k > i + 1 + \frac{1}{\log a} \log \left(\frac{2\epsilon c}{\lambda (1 + e^{-i\alpha/\mu})} \right).$$

Let $\lambda = 2, \mu = 0.5, a = 0.5, \alpha = 0.05$. Then we get c = 3 and the condition (3) becomes

$$k > i + 1 - \log_2 \epsilon + \log_2 \left(\frac{1 + e^{-0.1i}}{3}\right)$$

Since $-1.6 < \log_2\left(\frac{1+e^{-0.1i}}{3}\right) < -0.5$, we take for each $i, k = i + \lceil 0.5 - \log_2 \epsilon \rceil$, where $\lceil x \rceil$ is the smallest integer not smaller than x. Let $R(\epsilon) = \lceil 0.5 - \log_2 \epsilon \rceil$ then we have from the structure of the matrix P that $N_k = N_0 + kR(\epsilon), k = 0, 1, 2, \cdots$.

Numerical values for (L^*, M^*) and (L, M) are given in table. Table shows that the significant improvement L^* of L save a lot of computational task and memory.

TABLE. Numerical Results $(\delta=0.0001, \lambda=2, \mu=0.5, a=0.5, \alpha=0.05, \text{ and } c=3)$

	L	$\epsilon = \delta/L$	$M(\epsilon)$	$M^*(\epsilon)$	$R(\epsilon)$
	L^*	$\epsilon^* = \delta/L^*$	$M(\epsilon^*)$	$M^*(\epsilon^*)$	$R(\epsilon^*)$
T = 1	27.5855	3.62509×10^{-6}	18	15	19
	8.5	1.17647×10^{-5}	16	14	17
T = 5	3.6291×10^{6}	3.0589×10^{-11}	81	58	36
	128.5	7.7821×10^{-7}	81	50	21
T = 10	1.0686×10^{13}	9.35762×10^{-18}	163	112	58
	481	2.079×10^{-7}	163	92	23
T = 15	$3.4934 imes 10^{19}$	2.86252×10^{-24}	244	166	79
	1058.5	9.44733×10^{-8}	2~4	134	24
T=20	1.1420×10^{26}	8.75651×10^{-31}	326	219	101
	1861	5.37346×10^{-8}	326	175	25

References

- Gross, D. and Harris, C. M., Fundamentals of Queueing Theory 2nd ed., John Wiley & Sons, 1985.
- Hsu, G. H. and Yuan, X. M., Transient solution for denumerable-state Markov processes, J. Applied Probability 31 (1994), 635-645.
- Hsu, G. H. and Yuan, X. M., First passage times and their algorithms for Markov processes, Stochastic Models 11 (1995), 195-210.
- Ross, S. M., Introduction to Probability Models, 5th edition, Academic Press, 1993.

Department of Statistics Changwon National University Changwon 641-773, KOREA