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INTERSECTIONS OF MAXIMAL FACES IN
THE CONVEX SET OF POSITIVE LINEAR
MAPS BETWEEN MATRIX ALGEBRAS

SEUNG-HYEOK KYE AND SA-GE LEE

ABSTRACT. Let P; be the convex compact set of all unital positive
linear mpas between the n x n matrix algebra over the complex field.
We find a necessary and sufficient condition for which two maximal faces
of MP; intersect. In particular, we show that any pair of maxial faces
of P; has the nonempty mntersection, whenever n > 3.

1. Introduction

Let My be the C™-algebra of all n x n mairices over the complex
field, and P the convex set of all positive lincar maps between A,
that is, which send positive semi-definite matrices into themselves. The
structures of P are very complicated even in low dimensions, and several
authors have tried to understand the structurss of P. For example,
Stermer [S] found all extreme points of the convex set P; of all unital
positive linear maps for the case of n = 2. from which we know that
every positive linear map between 17, is deconiposable. On the other
hand, there are several examples of indecomposable maps which generate
extreme rays if n > 3 [CL, KK, O, R, W].

In order to investigate the facial structures of a convex subset C' of P,
the first author [K] have constructed a join homomorphisin ®¢ from the
complete lattice F(C') of all faces of the convex set C into the complete
lattice J(V) of all join homomorphisis from V into itself, where V is
the subspace lattice consisting of all subspaces of C*, or equivalently the
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lattice of all self-adjoint projections in C”. Using this machinery, it has
been shown that every maximal face of P; is of the form

Filén] ={¢ € Pr: o[ = 0}.

where [£] denotes the one-dimensional self-adjoint projection onto the
subspace spanned by £. If we consider a unit vector EeC?asann x1
matrix, (€] is nothing but ££* € A,,. Furthermore, every two maximal
faces are affine isomorphic to each other. In this note, we naturally look
at intersections of maximal faces in order to investigate facial structures
of P;. First of all, we find conditions for which two maximal faces have
nonempty intersection. Especially, we show that any two maximal faces
intersect each other, whenever n > 3. Note that the finite-dimensional
compact convex set Py has mfinitelv many maximal faces.

2. The case of n > 3

For a matrix U € M, we denote by o and 7y the positive linear
maps given by

ou: X = U'XU, 1 : X - U*X"U, X e M,.

respectively, where X" denotes the transpose of X. It is well-known
that ¢ € P is completely positive (respectively completely copositive) if
and only if ¢ is the convex combination of ou's (respectively r's) [C].
When n = 2, every o € P is the sum of a completely positive map and a
completely copositive map, that is, every ¢ € P is decomposable as was
mentioned in Introduction. Note that o is unital if and only if U is a
unitary.

LEMMA 2.1. For a positive linear map ¢ € Pr given by
8 t
o) o= o+ Yo,
1=1 7=1

the following are equivalent:

(1) ¢ € Fi[¢,y].
(i1) (€, Umn) = (E.Vin) = 0 for each { = 1,...,s and j = 1,...t,

where £ denotes the vector whose entries are complex conjugates
of the corresponding entries of €.
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PROOF. We may assume that £ and 5 arve unit vectors. Then, we

have [{] = £€* and [£]" = £€*, and so
6 € Filén) <= | D UTEE Ui+ Y V*EV; | =0
1 7

<=>< D UTEEU + 3 VEETY, 77,77> =0

i 7
— E 1€ Um|” + E
i ;

E*V,n]z =0.

The required condition (ii) follows from the lust formula. O
THEOREM 2.2. Assume that n > 3. Then we have
Fil& ] 0 Fr[&p2] 7 0

for any pairs (£;,n;) and (&, 12 ) of unit vectors.

ProOOF. First, we assume that [i1] # [12]. Put
¢ =2 = (2. )i,

and take unit vectors ¢; and ¢, which are ort hogonal to the subspaces
spanned by {£1,&;} and {(;.£2}. respectively. Since

(e CIC = (G ) = 0,
we may take a unitary U € A4,(C) such that
Un=a¢,  UK/IKD = ¢
Then we have

Une = UCH O2om)Unn = |ICliG2 + (02, m)C1.
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and so, it follows that

(&, Um) = (&.¢1) = 0,
(€2, Un2) = K&, Ca) + (g2, m M€z, C1) == 0.

By Lemma 2.1, we have oy € Fy o] OV Fr[€2, ).

In case of 1] = [12]. we may assume that 5, = 1,. Take a unit vector
¢ orthogonal to £ and €. and a unitary U which sends 7 to . Then we
see that

(EiUniy = (€6,,¢) = 0. i=1,2.

Therefore, we have o; € Fl&r, m]n Flé,, n2). O

3. The case of n =2
Now, we assume that n = 2. In this case, Theorem 2.2 is no longer
true. To see this, we consider the case [] = [72]. We may assume

that m = n2, and put =y, = 1,. If the map ¢ in (2.1) lies in
Fy[€1,n] N Frl&s, 9] then we have

(€. Uin) = (6. Uin) = (6. Vi) = (&2.Vjn) = 0.

foreachi=1,... . sandj =1...., t. If [£1] # [£2] then we also have
[61] # [€2], and so we have

Upp =V =0, el jeld

Therefore, it follows that

Sy = UrUm+ > V7V =0,

el =y

which is impossible since ¢(I) = I. This kind of restriction always occurs
in the case of n = 2. We begin with the following simple lemmas:
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LEMMA 3.1. Let a and 3 be complex numbers in the unit disc. Then
the following are equivalent:

(i) la| = ]5].
(i) There are vectors v,y € C* and z,w € C* for some s,t such that
2 2 2 2
lel® + 1107 = 10 Jlyl? + lwlf® = 1,

3.1
(3-1) alx.y) + oz, w) = 4.

PROOF. Assume that there are vectors .y, - and w with the relation
(3.1). Define X,Y € C*t' by

v = £ V= ay
R YA T \aw
Then we have | X|| =1, ||| = |a] and

(X.Y) = afe,y) +alz,w) = 3,

from which the relation |a| > || follows. For the converse, we may
assume that a # 0. In this case. put

p=1,i=0y= 2 0= 1= 2L
r=1, : = ‘y—d.u[—- o

THEOREM 3.2. Assume that n = 2. For unit vectors £1,&,m1,m2 In
C?, the following are equivalent:

(1) Frl&,m)0 Frléaon2] # 0.
(1) (€1, €2)] > [nyama)l.

Proor. If ¢ € Fi[&1,) 0 Fy[€:.12] then ¢ is of the forn in (2.1),
because every positive lincar map between Mo is decomposable. Take a
matrix W € Ay such that

(3.2) Wer = . Wey =,
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We also take unit vectors ¢; and C2 orthogonal to & and &, respectively.
Then for each & = 1.2 and j = 1. 2,....s. we have

(e UlWer) = (6. Uipi) = 0
by Lemma 2.1. Therefore, it follows that
(3.3) UWer = ai(y,  UilWey = bic,
for some a;,b; € C. We also have

(€651 er) = {66 Vi) =0,

for each # = 1,2 and j = 1,....¢. Since. (Co &) = 0 for b = 1.2, we
also have
(3.4) Villes = ¢;¢.. Ville, = (1;‘(‘2

for some ¢;,d; € C. Since o{l) = I. we Lave

W*W =oy(l)=(onoo))
K] f
=) WU Sy,
i=1 Jj=1

With (3.2), (3.3) and (3.4), this ide ntity becomes

1 7/) 1/1 ‘(, ’ UJ':‘((LQ))
(<77h'/2> ) Z(, G Il
t R N N
+ 3 ( lejf* (jd]-(g‘lz,@)

ey ¢y (G2, C1) d;

If we put

[25] ])1 C1 d]

Uy b o dy

I

W =

i
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then the above relation gives us

(36) ”l”- + ”:H" ”U“- + ”w”‘. _ >1’

=1.
(T, y)(C1s C2) + (20w {Cay C1) = (i yma2

By Lemma 3.1, we have

[msm2)] < 1CL G = ({6 &)

as was required.

For the converse, we first consider the case |()1,72)| = 1. In this case,
we also have [(£1,€2)| = 1. Therefore, it follows that [€,] = [£2] and
[m] = [n2], from which we have

Filém] = Frlés, ).

Now, assume that |(11,7,)| < 1. Taking unit vectors ¢; and C» orthogonal
to & and &3, respectively, we have

[nm2) | < (G- G2l

By Lemma 3.1, there are vectors +.y € C* and z,w € C! satisfying the
relation (3.6). We denote the entries of these vectors as in (3.5). Because
{m1,n2} is linearly independent, we may take metrices W, U, .. .. Uy and
Vi,..., Vi satisfying the relations (3.2). (3.3) and (3.4). Then it 1s clear
that the map ¢ defined by (2.1) lies in Fy om0 FrEa, ). O

In the case of [1] = [i32], we see that Fy [€1,m1 NFr[€2. 2] is nonempty
if and only if [£] = [&] if and only if the twe sets coincide as in the
proof of Theorem 3.2. On the other haund, if [§,] = [£;] then two sets
have the nonempty intersection by the theoren;. Take ¢ (k = 1,2) in
this intersection. If [11] # [n2] then ox([&]) = 0 and so

ol —[&])=1~or([61]) =1, k=12

Take unitary U such that U'¢; = €. Then the map ¥r = @ o gy sends
er1 and ey to 0 and I, respectively, where {eij} is the usual matrix
units. Form this, it is easy to see that vrle;;) = vr(e;;) = 0, and so
Y1 = ¢2. Therefore, the set Fy[¢,. i) N Frl€2.92] consists of a single
map, if [£1] = [£2] and [)1] # [92].
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