INTERSECTIONS OF MAXIMAL FACES IN THE CONVEX SET OF POSITIVE LINEAR MAPS BETWEEN MATRIX ALGEBRAS

SEUNG-HYEOK KYE AND SA-GE LEE

ABSTRACT. Let \mathcal{P}_I be the convex compact set of all unital positive linear mpas between the $n \times n$ matrix algebra over the complex field. We find a necessary and sufficient condition for which two maximal faces of $\mathbb{R}P_I$ intersect. In particular, we show that any pair of maximal faces of \mathcal{P}_I has the nonempty intersection, whenever $n \geq 3$.

1. Introduction

Let M_n be the C^* -algebra of all $n \times n$ matrices over the complex field, and \mathcal{P} the convex set of all positive linear maps between M_n , that is, which send positive semi-definite matrices into themselves. The structures of \mathcal{P} are very complicated even in low dimensions, and several authors have tried to understand the structures of \mathcal{P} . For example, Størmer [S] found all extreme points of the convex set \mathcal{P}_I of all unital positive linear maps for the case of n=2, from which we know that every positive linear map between M_2 is decomposable. On the other hand, there are several examples of indecomposable maps which generate extreme rays if $n \geq 3$ [CL, KK, O, R, W].

In order to investigate the facial structures of a convex subset C of \mathcal{P} , the first author [K] have constructed a join homomorphism Φ_C from the complete lattice $\mathcal{F}(C)$ of all faces of the convex set C into the complete lattice $\mathcal{J}(\mathcal{V})$ of all join homomorphisms from \mathcal{V} into itself, where \mathcal{V} is the subspace lattice consisting of all subspaces of \mathbb{C}^n , or equivalently the

Received June 16, 1995. Revised August 15, 1995.

¹⁹⁹¹ AMS Subject Classification: 46L05, 15A30.

Key words: matrix algebra, positive linear maps, maximal faces.

Partially supported by SNU Daewoo Research Fund and GARC.

lattice of all self-adjoint projections in \mathbb{C}^n . Using this machinery, it has been shown that every maximal face of \mathcal{P}_I is of the form

$$F_I[\xi,\eta] = \{\phi \in \mathcal{P}_I : \phi([\xi])\eta = 0\}.$$

where $[\xi]$ denotes the one-dimensional self-adjoint projection onto the subspace spanned by ξ . If we consider a unit vector $\xi \in \mathbb{C}^n$ as an $n \times 1$ matrix, $[\xi]$ is nothing but $\xi \xi^* \in M_n$. Furthermore, every two maximal faces are affine isomorphic to each other. In this note, we naturally look at intersections of maximal faces in order to investigate facial structures of \mathcal{P}_I . First of all, we find conditions for which two maximal faces have nonempty intersection. Especially, we show that any two maximal faces intersect each other, whenever $n \geq 3$. Note that the finite-dimensional compact convex set \mathcal{P}_I has infinitely many maximal faces.

2. The case of $n \ge 3$

For a matrix $U \in M_n$, we denote by σ_U and τ_U the positive linear maps given by

$$\sigma_U: X \mapsto U^*XU, \quad \tau_U: X \mapsto U^*X^{\operatorname{tr}}U, \qquad X \in M_n,$$

respectively, where X^{tr} denotes the transpose of X. It is well-known that $\phi \in \mathcal{P}$ is completely positive (respectively completely copositive) if and only if ϕ is the convex combination of σ_U 's (respectively τ_U 's) [C]. When n=2, every $\phi \in \mathcal{P}$ is the sum of a completely positive map and a completely copositive map, that is, every $\phi \in \mathcal{P}$ is decomposable as was mentioned in Introduction. Note that σ_U is unital if and only if U is a unitary.

LEMMA 2.1. For a positive linear map $\phi \in \mathcal{P}_I$ given by

(2.1)
$$\phi = \sum_{i=1}^{s} \sigma_{U_i} + \sum_{j=1}^{t} \tau_{V_j},$$

the following are equivalent:

- (i) $\phi \in F_I[\xi, \eta]$.
- (ii) $\langle \xi, U_i \eta \rangle = \langle \bar{\xi}, V_j \eta \rangle = 0$ for each i = 1, ..., s and j = 1, ..., t, where $\bar{\xi}$ denotes the vector whose entries are complex conjugates of the corresponding entries of ξ .

PROOF. We may assume that ξ and η are unit vectors. Then, we have $[\xi] = \xi \xi^*$ and $[\xi]^{\text{tr}} = \bar{\xi} \bar{\xi}^*$, and so

$$\phi \in F_{I}[\xi, \eta] \iff \left(\sum_{i} U_{i}^{*} \xi \xi^{*} U_{i} + \sum_{j} V_{j}^{*} \bar{\xi} \bar{\xi}^{*} V_{j}\right) \eta = 0$$

$$\iff \left\langle \left(\sum_{i} U_{i}^{*} \xi \xi^{*} U_{i} + \sum_{j} V_{j}^{*} \bar{\xi} \bar{\xi}^{*} V_{j}\right) \eta, \eta \right\rangle = 0$$

$$\iff \sum_{i} \left| \xi^{*} U_{i} \eta \right|^{2} + \sum_{i} \left| \bar{\xi}^{*} V_{j} \eta \right|^{2} = 0.$$

The required condition (ii) follows from the last formula. \Box

THEOREM 2.2. Assume that $n \geq 3$. Then we have

$$F_I[\xi_1,\eta_1]\cap F_I[\xi_2,\eta_2]\neq\emptyset$$

for any pairs (ξ_1, η_1) and (ξ_2, η_2) of unit vectors.

PROOF. First, we assume that $[\eta_1] \neq [\eta_2]$. Put

$$\zeta = \eta_2 - \langle \eta_2, \eta_1 \rangle \eta_1,$$

and take unit vectors ζ_1 and ζ_2 which are orthogonal to the subspaces spanned by $\{\xi_1, \xi_2\}$ and $\{\zeta_1, \xi_2\}$, respectively. Since

$$\langle \eta_1, \zeta/||\zeta|| \rangle = \langle \zeta_1, \zeta_2 \rangle = 0,$$

we may take a unitary $U \in M_n(\mathbb{C})$ such that

$$U\eta_1 = \zeta_1, \qquad U(\zeta/||\zeta||) = \zeta_2.$$

Then we have

$$U\eta_2 = U\zeta + \langle \eta_2, \eta_1 \rangle U\eta_1 = ||\zeta||\zeta_2 + \langle \eta_2, \eta_1 \rangle \zeta_1,$$

and so, it follows that

$$\langle \xi_1, U\eta_1 \rangle = \langle \xi_1, \zeta_1 \rangle = 0,$$

$$\langle \xi_2, U\eta_2 \rangle = \|\zeta\| \langle \xi_2, \zeta_2 \rangle + \langle \eta_2, \eta_1 \rangle \langle \xi_2, \zeta_1 \rangle = 0.$$

By Lemma 2.1, we have $\sigma_U \in F_I[\xi_1, \eta_1] \cap F_I[\xi_2, \eta_2]$.

In case of $[\eta_1] = [\eta_2]$, we may assume that $\eta_1 = \eta_2$. Take a unit vector ζ orthogonal to ξ_1 and ξ_2 , and a unitary U which sends η to ζ . Then we see that

$$\langle \xi_i, U\eta_i \rangle = \langle \xi_i, \zeta \rangle = 0, \qquad i = 1, 2.$$

Therefore, we have $\sigma_U \in F[\xi_1, \eta_1] \cap F[\xi_2, \eta_2]$. \square

3. The case of n=2

Now, we assume that n=2. In this case, Theorem 2.2 is no longer true. To see this, we consider the case $[\eta_1] = [\eta_2]$. We may assume that $\eta_1 = \eta_2$, and put $\eta = \eta_1 = \eta_2$. If the map ϕ in (2.1) lies in $F_I[\xi_1, \eta] \cap F_I[\xi_2, \eta]$ then we have

$$\langle \xi_1, U_i \eta \rangle = \langle \xi_2, U_i \eta \rangle = \langle \xi_1, V_j \eta \rangle = \langle \bar{\xi_2}, V_j \eta \rangle = 0.$$

for each i = 1, ..., s and j = 1, ..., t. If $[\xi_1] \neq [\xi_2]$ then we also have $[\bar{\xi_1}] \neq [\bar{\xi_2}]$, and so we have

$$U_i \eta = V_j \eta = 0, \qquad i \in I, \ j \in J.$$

Therefore, it follows that

$$\phi(I)\eta = \sum_{i \in I} U_i^* U_i \eta + \sum_{j \in J} V_j^* V_j \eta = 0,$$

which is impossible since $\phi(I) = I$. This kind of restriction always occurs in the case of n = 2. We begin with the following simple lemma:

LEMMA 3.1. Let α and β be complex numbers in the unit disc. Then the following are equivalent:

- (i) $|\alpha| \ge |\beta|$.
- (ii) There are vectors $x, y \in \mathbb{C}^s$ and $z, w \in \mathbb{C}^t$ for some s, t such that

(3.1)
$$||x||^2 + ||z||^2 = 1, \quad ||y||^2 + ||w||^2 = 1, \\ \alpha \langle x, y \rangle + \alpha \langle z, w \rangle = \beta.$$

PROOF. Assume that there are vectors x, y, z and w with the relation (3.1). Define $X, Y \in \mathbb{C}^{s+t}$ by

$$X = \begin{pmatrix} x \\ z \end{pmatrix}, \qquad Y = \begin{pmatrix} \bar{\alpha}y \\ \alpha w \end{pmatrix}$$

Then we have ||X|| = 1, $||Y|| = |\alpha|$ and

$$\langle X, Y \rangle = \alpha \langle x, y \rangle + \bar{\alpha} \langle z, w \rangle = \beta,$$

from which the relation $|\alpha| \ge |\beta|$ follows. For the converse, we may assume that $\alpha \ne 0$. In this case, put

$$x = 1, z = 0, y = \frac{\bar{\beta}}{\bar{\alpha}}, w = \sqrt{1 - \frac{|\beta|^2}{|\alpha|^2}},$$

with s = t = 1. \square

THEOREM 3.2. Assume that n=2. For unit vectors $\xi_1, \xi_2, \eta_1, \eta_2$ in \mathbb{C}^2 , the following are equivalent:

- (i) $F_I[\xi_1, \eta_1] \cap F_I[\xi_2, \eta_2] \neq \emptyset$.
- (ii) $|\langle \xi_1, \xi_2 \rangle| \geq |\langle \eta_1, \eta_2 \rangle|$.

PROOF. If $\phi \in F_I[\xi_1, \eta_1] \cap F_I[\xi_2, \eta_2]$ then ϕ is of the form in (2.1), because every positive linear map between M_2 is decomposable. Take a matrix $W \in M_2$ such that

$$(3.2) W \epsilon_1 = \eta_1, W \epsilon_2 = \eta_2.$$

We also take unit vectors ζ_1 and ζ_2 orthogonal to ξ_1 and ξ_2 , respectively. Then for each k = 1, 2 and $i = 1, 2, \ldots, s$, we have

$$\langle \xi_k, U_i W e_k \rangle = \langle \xi_k, U_i \eta_k \rangle = 0$$

by Lemma 2.1. Therefore, it follows that

$$(3.3) U_i W \epsilon_1 = a_i \zeta_1, U_i W \epsilon_2 = b_i \zeta_2$$

for some $a_i, b_i \in \mathbb{C}$. We also have

$$\langle \bar{\xi_k}, V_j W e_k \rangle = \langle \bar{\xi_k}, V_j \eta_k \rangle = 0,$$

for each k = 1, 2 and j = 1, ..., t. Since, $\langle \bar{\zeta}_k, \bar{\xi}_k \rangle = 0$ for k = 1, 2, we also have

(3.4)
$$V_j W \epsilon_1 = c_j \zeta_1, \qquad V_j W \epsilon_2 = d_j \bar{\zeta_2}$$

for some $c_j, d_j \in \mathbb{C}$. Since $\phi(I) = I$, we have

$$\begin{split} W^*W &= \sigma_W(I) = (\sigma_W \circ \phi)(I) \\ &= \sum_{i=1}^s W^* U_i^* U_i W + \sum_{j=1}^t W^* V_j^* V_j W. \end{split}$$

With (3.2), (3.3) and (3.4), this identity becomes

$$\begin{pmatrix}
1 & \langle \eta_2, \eta_1 \rangle \\
\langle \eta_1, \eta_2 \rangle & 1
\end{pmatrix} = \sum_{i=1}^s \begin{pmatrix} |a_i|^2 & \tilde{a_i} b_i \langle \zeta_2, \zeta_1 \rangle \\
a_i \tilde{b_i} \langle \zeta_1, \zeta_2 \rangle & |b_i|^2
\end{pmatrix} + \sum_{j=1}^t \begin{pmatrix} |c_j|^2 & \epsilon_j d_j \langle \zeta_1, \zeta_2 \rangle \\
\epsilon_j \tilde{d_j} \langle \zeta_2, \zeta_1 \rangle & |d_j|^2
\end{pmatrix}$$

If we put

(3.5)
$$x = \begin{pmatrix} a_1 \\ \vdots \\ a_s \end{pmatrix}, y = \begin{pmatrix} b_1 \\ \vdots \\ b_s \end{pmatrix}, z = \begin{pmatrix} c_1 \\ \vdots \\ c_t \end{pmatrix}, w = \begin{pmatrix} d_1 \\ \vdots \\ d_t \end{pmatrix},$$

then the above relation gives us

By Lemma 3.1, we have

$$|\langle \eta_1, \eta_2 \rangle| \le |\langle \zeta_1, \zeta_2 \rangle| = |\langle \xi_1, \xi_2 \rangle|$$

as was required.

For the converse, we first consider the case $|\langle \eta_1, \eta_2 \rangle| = 1$. In this case, we also have $|\langle \xi_1, \xi_2 \rangle| = 1$. Therefore, it follows that $[\xi_1] = [\xi_2]$ and $[\eta_1] = [\eta_2]$, from which we have

$$F_I[\xi_1, \eta_1] = F_I[\xi_2, \eta_2].$$

Now, assume that $|\langle \eta_1, \eta_2 \rangle| < 1$. Taking unit vectors ζ_1 and ζ_2 orthogonal to ξ_1 and ξ_2 , respectively, we have

$$|\langle \eta_1, \eta_2 \rangle| \le |\langle \zeta_1, \zeta_2 \rangle|.$$

By Lemma 3.1, there are vectors $x, y \in \mathbb{C}^s$ and $z, w \in \mathbb{C}^t$ satisfying the relation (3.6). We denote the entries of these vectors as in (3.5). Because $\{\eta_1, \eta_2\}$ is linearly independent, we may take matrices W, U_1, \ldots, U_s and V_1, \ldots, V_t satisfying the relations (3.2). (3.3) and (3.4). Then it is clear that the map ϕ defined by (2.1) lies in $F_I[\xi_1, \eta_1] \cap F_I[\xi_2, \eta_2]$. \square

In the case of $[\eta_1] = [\eta_2]$, we see that $F_I[\xi_1, \eta_1] \cap F_I[\xi_2, \eta_2]$ is nonempty if and only if $[\xi_1] = [\xi_2]$ if and only if the two sets coincide as in the proof of Theorem 3.2. On the other hand, if $[\xi_1] = [\xi_2]$ then two sets have the nonempty intersection by the theorem. Take ϕ_k (k = 1, 2) in this intersection. If $[\eta_1] \neq [\eta_2]$ then $\phi_k([\xi_1]) = 0$ and so

$$\phi_k(I - [\xi_1]) = I - \phi_k([\xi_1]) = I, \qquad k = 1, 2.$$

Take unitary U such that $Ue_1 = \xi_1$. Then the map $\psi_k = \phi_k \circ \sigma_U$ sends e_{11} and e_{22} to 0 and I, respectively, where $\{e_{ij}\}$ is the usual matrix units. Form this, it is easy to see that $\psi_k(e_{ij}) = \psi_k(e_{ji}) = 0$, and so $\psi_1 = \psi_2$. Therefore, the set $F_I[\xi_1, \eta_1] \cap F_I[\xi_2, \eta_2]$ consists of a single map, if $[\xi_1] = [\xi_2]$ and $[\eta_1] \neq [\eta_2]$.

References

- [C] M.-D. Choi. Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975), 285-290.
- [CL] M.-D. Choi and T.-T. Lam, Extremal positive semidefinite forms, Math. Ann. 231 (1977), 1-18.
- [KK] H.-J. Kim and S.-H. Kye, Indecomposable extreme positive linear maps in matrix algebras, Bull. London Math. Soc. 26 (1994), 575-581.
- [K] S.-H. Kye, Facial Structures for positive linear maps between matrix algebras, Canad. Math. Bull. (to appear).
- [O] H. Osaka, A class of extremal positive maps in 3 × 3 matrix algebras, Publ. RIMS, Kyoto Univ. 28 (1992), 747-756.
- [R] A. G. Robertson, Positive projections on C*-algebras and extremal positive maps, J. London Math. Soc. (2) 32 (1985), 133-140.
- [S] E. Størmer, Positive linear maps of operator algebras, Acta Math. 110 (1963), 233-278.
- [W] S. L. Woronowicz, Positive maps of low dimensional matrix algebras, Rep. Math. Phys. 10 (1976), 165-183.

Department of Mathematics Seoul National University Seoul 151-742, KOREA