ON STRUCTURES OF CONTRACTIONS IN DUAL OPERATOR ALGEBRAS

MYUNG JAE KIM

ABSTRACT. We discuss certain structure theorems in the class A which is closely related to the study of the problems of solving systems concerning the predual of a dual operator algebra generated by a contraction on a separable infinite dimensional complex Hilbert space.

The notation and terminology employed here agree with those in [4] and [9]. We recall nonetheless them for the convenience of the reader.

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $I_{\mathcal{H}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$. Let $\mathcal{C}_1 = \mathcal{C}_1(\mathcal{H})$ be the ideal of trace class operators in $\mathcal{L}(\mathcal{H})$ under the trace norm. Suppose that \mathcal{A} is a dual algebra in $\mathcal{L}(\mathcal{H})$ and let $^{\perp}\mathcal{A}$ denote the preannihilator of \mathcal{A} in \mathcal{C}_1 . Let $\mathcal{Q}_{\mathcal{A}}$ denote the quotient space $\mathcal{C}_1/^{\perp}\mathcal{A}$. One knows that \mathcal{A} is the dual space of $\mathcal{Q}_{\mathcal{A}}$ under the pairing

$$\langle T, [L] \rangle = trace(TL), T \in \mathcal{A}, [L] \in \mathcal{Q}_{\mathcal{A}}.$$

Furthermore, the weak* topology that accrues to \mathcal{A} by virtue of this duality coincides with the ultraweak operator topology on \mathcal{A} .

The structure of contractions in dual algebras is deeply related to the classes \mathbb{A} and $\mathbb{A}_{m,n}$ which will be defined below and the study of the problem of solving systems of simultaneous equations in the predual of a singly generated dual algebra (see [1], [3] and [4]). This theory is applied to the study of invariant subspaces and compression theory. In particular, in [2] and [5] Bercovici and Chevreau proved independently $\mathbb{A} = \mathbb{A}_{1,1}$.

Received May 20, 1995. Revised August 1, 1995.

¹⁹⁹¹ AMS Subject Classification: 47D27, 47A20.

Key words: dual operator algebras, semi-invariant, compressions.

This work was partially supported by Kyonggi University Research Grant, 1994.

In this paper, we obtain some structure theorems of contractions in the class A.

For $T \in \mathcal{L}(\mathcal{H})$, let \mathcal{A}_T denote the dual algebra generated by T. For vectors x and y in \mathcal{H} , we write, as usual, $x \otimes y$ for the rank one operator in \mathcal{C}_1 defined by $(x \otimes y)(u) = (u, y)x$, $u \in \mathcal{H}$.

Let us recall that any contraction T can be written as a direct sum $T = T_1 \oplus T_2$, where T_1 is a completely nonunitary contraction and T_2 is a unitary operator (cf. [9]). If T_2 is absolutely continuous or acts on the space (0), T will be called an absolutely continuous contraction.

Recall that $T \in C_{\cdot 0}$ if $||T^{*n}x|| \longrightarrow 0$ for any $x \in \mathcal{H}$. We say $T \in C_{0}$. if $T^{*} \in C_{\cdot 0}$.

We shall denote by \mathbb{D} the open unit disc in the complex plane \mathbb{C} and we write \mathbb{T} for the boundary of \mathbb{D} . For $1 \leq p \leq \infty$ we denote the usual Lebesgue function space by $L^p = L^p(\mathbb{T})$. For $1 \leq p \leq \infty$ we denote by $H^p = H^p(\mathbb{T})$ the subspace of L^p consisting of those functions whose negative Fourier coefficients vanish. One knows that the preamhilator $L^1(H^\infty)$ of L^1 is the subspace L^1 consisting of those functions L^1 in L^1 is the subspace L^1 consisting of those functions L^1 in L^1 for which analytic extension L^1 to L^1 satisfies L^1 to L^1 is the dual space of L^1/H^1_0 .

The following Foiaş-Nagy functional calculus provides a good relationship between the function space H^{∞} and a singly generated dual algebra \mathcal{A}_T .

THEOREM 1 [4, THEOREM 4.1]. Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Then there is an algebra homomorphism

$$\Phi_T: H^\infty \longrightarrow \mathcal{A}_T$$

defined by $\Phi_T(f) = f(T)$ such that

- (a) $\Phi_T(1) = I_H$, $\Phi_T(\xi) = T$,
- (b) $\|\Phi_T(f)\| \le \|f\|_{\infty}, f \in H^{\infty},$
- (c) Φ_T is continuous if both H^{∞} and \mathcal{A}_T are given their weak* topologies,
 - (d) the range of Φ_T is weak* dense in \mathcal{A}_T ,
- (e) there exists a bounded, linear, one-to-one map $\phi_T: \mathcal{Q}_T \longrightarrow L^1/H_0^1$ such that $\phi_T^* = \Phi_T$, and
- (f) if Φ_T is an isometry, then Φ_T is a weak* homeomorphism of H^{∞} onto \mathcal{A}_T and ϕ_T is an isometry of \mathcal{Q}_T onto L^1/H^1_0 .

DEFINITION 2. Suppose that m and n are any cardinal numbers such that $1 \le m, n \le \aleph_0$. A dual algebra \mathcal{A} will be said to have property $(\mathbb{A}_{m,n})$ if every $m \times n$ system of simultaneous equations of the form

$$[x_i \otimes y_j] = [L_{ij}], \ 0 \le i < m, \ 0 \le j < n,$$

where $\{[L_{ij}]\}_{\substack{0 \le i < m \ 0 \le j < n}}^{\infty}$ is an arbitrary $m \times n$ array from $\mathcal{Q}_{\mathcal{A}}$, has a solution $\{x_i\}_{0 \le i < m}$, $\{y_j\}_{0 \le j < n}$ consisting of a pair of sequences of vectors from \mathcal{H} . For brevity, we shall denote $(\mathbb{A}_{n,n})$ by (\mathbb{A}_n) . The class $\mathbb{A}(\mathcal{H})$ consists of all those absolutely continuous contractions T in $\mathcal{L}(\mathcal{H})$ for which the functional calculus $\Phi_T: H^{\infty} \longrightarrow \mathcal{A}_T$ is an isometry. Furthermore, we denote by $\mathbb{A}_{m,n}(\mathcal{H})$ the set of all T in $\mathbb{A}(\mathcal{H})$ such that the algebra \mathcal{A}_T has property $(\mathbb{A}_{m,n})$. We write simply $\mathbb{A}_{m,n}$ for $\mathbb{A}_{m,n}(\mathcal{H})$ unless we mention otherwise.

Let P_{λ} be the Poisson kernel function

(1)
$$P_{\lambda}(\epsilon^{it}) = \frac{1 - |\lambda|^2}{|1 - \overline{\lambda}\epsilon^{it}|^2}, \quad \epsilon^{it} \in \mathbb{T},$$

in L^1 , for each $\lambda \in \mathbb{D}$. Then it follows from [4, p34] that

(2)
$$\langle f, [P_{\lambda}] \rangle = \widetilde{f}(\lambda), \quad f \in H^{\infty},$$

where \widetilde{f} is the analytic extension of f to \mathbb{D} . For a given contraction $T \in \mathbb{A}$, let us denote $\phi_T^{-1}([P_{\lambda}]) = [C_{\lambda}]$. Then we have

(3)
$$\langle f(T), [C_{\lambda}] \rangle = \widetilde{f}(\lambda), \quad f \in H^{\infty}.$$

Throughout this paper, \mathbb{N} is the set of all natural numbers. For $\mathcal{M} \in \text{Lat}(T)$, the class of invariant subspaces for an operator $T \in \mathcal{L}(\mathcal{H})$, we denote $T|\mathcal{M}$ for the restriction of T to \mathcal{M} . If $T \in \mathcal{L}(\mathcal{H})$ and \mathcal{K} is a semi-invariant subspace for T (i.e., there exist $\mathcal{K}_1, \mathcal{K}_2 \in \text{Lat}(T)$ with $\mathcal{K}_1 \supset \mathcal{K}_2$ such that $\mathcal{K} = \mathcal{K}_1 \oplus \mathcal{K}_2$), we shall write $T_{\mathcal{K}} = P_{\mathcal{K}}T|\mathcal{K}$ for the compression of T to \mathcal{K} , where $P_{\mathcal{K}}$ is the orthogonal projection whose range is \mathcal{K} .

For $T \in \mathbb{A}$ and any nonnegative integer n, we define a linear functional

$$C_T^{(n)}: \mathcal{A}_T \to \mathbb{C}$$

by

$$C_T^{(n)}h(T) = \hat{h}(n)$$
 for every $h \in H^{\infty}$,

where $\hat{h}(n)$ is the *n*-th Fourier coefficient of h (cf. [6]).

Now we are ready to prove the following structure theorem for a contraction in the class A.

THEOREM 3. Suppose that $T \in \mathbb{A}(\mathcal{H})$. Assume that there exist a vector x and a sequence $\{t_i\}_{i=1}^{\infty}$ of vectors in \mathcal{H} such that

(4)
$$[x \otimes t_i]_T = [C_0^{(i)}]_T, \quad i = 0, 1, 2, \cdots.$$

Then there exists a semi-invariant subspace \mathcal{N} for T such that

- (i) $T_{\mathcal{N}} \in C_{\cdot 0}$ and
- (ii) there exists a sequence $\{x_n\}_{n=1}^{\infty}$ of vectors in the closed unit ball of \mathcal{N} converging weakly to zero such that

(5)
$$[C_0]_T = [x_n \odot x_n]_T, \quad n = 1, 2, \cdots$$

PROOF. Let us consider the subspace

$$\mathcal{M} = \bigvee_{k>0} T^k x.$$

Then it is obvious that $\mathcal{M} \in Lat(T)$. According to the method of [6, Theorem 6.2], we can obtain an orthonormal sequence $\{x_n\}_{n=1}^{\infty}$ of vectors in \mathcal{H} converging weakly to zero such that

(6)
$$x_n \in Ker(T|\mathcal{M})^{*n+1} \oplus Ker(T|\mathcal{M})^{*n}, \quad n \in \mathbb{N}.$$

Then

(7)
$$[C_0]_T = [x_n \otimes x_n]_T, \quad n = 1, 2, \cdots.$$

Now let us put

(8)
$$\mathcal{N} = \bigvee_{k>0} Ker((T|\mathcal{M})^{*k}).$$

Then $\mathcal{N} \in Lat(T|\mathcal{M})^*$ and $x_n \in \mathcal{N}$. Setting $A := (T|\mathcal{M})^*|\mathcal{N}$, it follows from [7, Proposition 2.8] that $A \in C_0$. Notice that

$$(9) T^* = \begin{pmatrix} (T|\mathcal{M})^* & 0 \\ * & * \end{pmatrix}$$

relative to a decomposition $\mathcal{M} \oplus \mathcal{M}^{\perp}$. Since $\mathcal{N} \in Lat(T|\mathcal{M})^*$, one has

(10)
$$T = \begin{pmatrix} * & * & * \\ 0 & A^* & * \\ 0 & 0 & * \end{pmatrix}$$

relative to a decomposition $(\mathcal{H} \oplus \mathcal{M}) \oplus \mathcal{N} \oplus (\mathcal{N} \oplus \mathcal{N})$. Hence $T_{\mathcal{N}} = A^* \in C_{\cdot 0}$ and the proof is complete. \square

The following is an immediate corollary of Theorem 3.

COROLLARY 4. Suppose that $T \in \mathbb{A}_{1,\aleph_0}$. Then there exists a semi-invariant subspace \mathcal{N} for T satisfying (i) and (ii) in Theorem 3.

In general the converse implication of Corollary 4 is not always true because of Example 6. To discuss the example we need the following lemma.

LEMMA 5 [8, THEOREM 2.4]. Suppose that $T \in C_{0} \cap \mathbb{A}$ satisfies the defect index

$$d_T = dim \overline{\{(I - T^*T)^{\frac{1}{2}}\mathcal{H}\}} < \infty,$$

and let n be a positive interger. Then the following are equivalent:

- (i) $T \in \mathbb{A}_{n,1} \setminus \mathbb{A}_{n+1,1}$;
- (ii) $T \in \mathbb{A}_{n,\aleph_0} \setminus \mathbb{A}_{n+1,1}$;
- (iii) the minimal coisometric extension B_T of T can be decomposed by $S_T^* \oplus B^{(n)}$, where S_T^* is the backward unilateral shift part of B_T and $B^{(n)}$ is the bilateral shift operator of multiplicity n.

EXAMPLE 6. Let S be a unilateral shift operator of multiplicity one. Let $T = S^* \oplus \lambda I_{\mathcal{H}}$ with $\lambda = 0$. Then there exists a semi-invariant subspace \mathcal{N} for T satisfying (i) and (ii) in Theorem 3, but T is not in the class \mathbb{A}_{1,\aleph_0} . Indeed, take $\mathcal{N} := (0) \oplus \mathcal{H}$. Let $\{\epsilon_i\}_{n=1}^{\infty}$ be an orthonormal

basis in \mathcal{H} . Then $\{e_n\}_{n=1}^{\infty}$ converges weakly to zero. Without loss of generality, we assume that e_n belongs to \mathcal{N} , i.e., we consider e_n as $0 \oplus e_n$. Since

(11)
$$\langle T^k, [C_0]_T \rangle = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{if } k = 1, 2, \dots \end{cases}$$

and for any $n \in \mathbb{N}$

(12)
$$\langle T^k, [\epsilon_n \otimes \epsilon_n]_T \rangle = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{if } k = 1, 2, \cdots \end{cases}$$

we have that

(13)
$$[C_0]_T = [e_n \odot e_n]_T, \quad n = 1, 2, \cdots.$$

Let B_T be the minimal coisometric extension of T. Obviously we have $B_T = S^* \oplus S^*$. Hence by lemma 5 we have $T \notin \mathbb{A}_{1,\aleph_0}$. \square

In particular, we apply the operator in Example 6 for the membership of the classes $\mathbb{A}_{m,n}$ in the following proposition.

PROPOSITION 7. Suppose that $T = S^{*(n)} \oplus \lambda I_{\mathcal{H}}$ with $\lambda = 0$ for some $n \in \mathbb{N}$. Then

$$(14) T \in \mathbb{A}_{\aleph_0,n} \setminus (\mathbb{A}_{n+1} \cup \mathbb{A}_{1,\aleph_0})$$

PROOF. It is obvious that $T \in \mathbb{A}_{\aleph_0,n}$. Furthermore, since $T^* = S^{(n)} \oplus 0_{\mathcal{H}}$, the minimal coisometric extension B_{T^*} of T^* is $B^{(n)} \oplus S^*$, where B is the bilateral shift operator of multiplicty one. According to Lemma 5, $T^* \notin \mathbb{A}_{n+1}$. So $T \notin \mathbb{A}_{n+1}$. Moreover, since $B_T = S^{*(n)} \oplus S^*$, by Lemma 5 $T \notin \mathbb{A}_{1,\aleph_0}$. \square

Finally, we discuss a structure theorem for contractions in the class **A** as following.

THEOREM 8. Suppose that $T \in \mathbb{A}(\mathcal{H})$. Assume that there exists a sequence $\{x_k\}_{k=1}^{\infty}$ of vectors from the closed unit ball of \mathcal{H} converging weakly to zero such that

- (i) $[C_0]_T = [x_k \otimes x_k]_T$, $k = 1, 2, \dots$, and
- (ii) there exists a sequence $\{\mathcal{M}_k\}_{k=1}^{\infty}$ of invariant subspaces for T^* such that for each $k \in \mathbb{N}$, $x_k \in \mathcal{M}_k$ and $T_{\mathcal{M}_k} \in C_{\cdot 0}$.

Then $T_{\mathcal{M}} \in C_{\cdot 0}$, where

(15)
$$\mathcal{M} = \bigvee_{k=1}^{\infty} \mathcal{M}_k.$$

PROOF. Since $\mathcal{M}_k \in Lat(T^*)$, we may set $A := T^* | \mathcal{M}_k$. Then we have

$$(16) T = \begin{pmatrix} * & * \\ 0 & A^* \end{pmatrix}$$

relative to a decomposition $(\mathcal{H} \oplus \mathcal{M}_k) \oplus \mathcal{M}_k$. So $A^* = T_{\mathcal{M}_k}$. Let $x \in \mathcal{M}_k$. Then $||A^n x|| \to 0$ and $||T^{*n} x|| \to 0$. So

(17)
$$\mathcal{M}_k \subset \{x \in \mathcal{H} : ||T^{*n}x|| \to 0\}$$

for all positive integers k. Now let us put again

(18)
$$\mathcal{M} := \bigvee_{k=1}^{\infty} \mathcal{M}_k.$$

Then \mathcal{M} is a semi-invariant subspace for T and $\{x_k\}_{k=1}^{\infty}$ is contained in the closed unit ball of \mathcal{M} . Furthermore, since $\{x \in \mathcal{H} : ||T^{*n}x|| \to 0\}$ is a subspace of \mathcal{H} , we have

(19)
$$\mathcal{M} \subset \{x \in \mathcal{H} : ||T^{*n}x|| \to 0\}.$$

Set

$$(20) T^* = \begin{pmatrix} * & 0 \\ * & B \end{pmatrix},$$

where $B := T^* | \mathcal{M}$, relative to a decomposition $(\mathcal{H} \oplus \mathcal{M}) \oplus \mathcal{M}$. Let $x \in \mathcal{M}$. Then

(21)
$$||T_{\mathcal{M}}^{*n}x|| = ||B^nx|| = ||T^{*n}x|| \to 0.$$

So $T_{\mathcal{M}} \in C_{\cdot 0}$. Hence the proof is complete. \square

ACKNOWLEDGEMENTS. The author owes a debt of gratitude to Professor Il Bong Jung for helpful discussions.

References

- C. Apostol, H. Bercovici, C. Foiaş and C. Pearcy, Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I, J. Funct Anal. 63 (1985), 369-404.
- 2. H. Bercovici, Factorization theorems and the structure of operators on Hilbert space, Ann. of Math. 128 (1988), 399-413.
- H. Bercovici, C. Foiaş and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I, Michigan Math. J. 30 (1983), 335-354.
- Dual algebra with applications to invariant subspaces and dilation theory, CBMS Conf. Ser. in Math. No. 56, Amer. Math. Sec., Providence, R.I., 1985.
- B. Chevreau, Sur les contractions à calcul fontionel isométrique. II, J. Operator Theory 20 (1988), 269-293.
- 6. B. Chevreau, G. Exner and C. Pearcy, On the structure of contraction operators, III, Michigan Math. J. 36 (1989), 29-62.
- B. Chevreau and C. Pearcy, On the structure of contraction operators with applications to invariant subspaces, J. Funct. Anal. 67 (1986), 360-379.
- 8. G. Exner, Y. Jo and I. Jung, Co-contractions: dual operator algebras, Jordan models, and multiplicity, J. Operator Theory (to appear).
- Sz.-Nagy and C. Foias, Harmonic analysis of operators on the Hilbert space, North Holland Akademiai Kiado, Amsterdam/Budapest, 1970.

Department of Mathematics Kyonggi University Suwon 442-760, Korea