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REFLEXIVITY OF NORMED
ALMOST LINEAR SPACES

SANG HaN LEE

ABSTRACT. We prove that if a nals X is reflexive, then X = Wy + V.
We prove also that if an als X has a finite basis then X = Wy + Vy if
and only if X is reflexive.

1. Introduction

G. Godini{2,3,4] introduced the almost linear space(als), a concept
which generalizes linear space(ls). In this paper, we introduce the alge-
braic dual space and algebraic double dual space of the als X, and define
algebraic reflexivity of the als X. In general, the als X is not embeddable
into its algebraic double dual space whereas it is true for linear spaces.

Using the concept of basis of an als introduced by Godini[2], we obtain
the following results :

(1) If an als X has a basis, then X is embeddable in the algebraic
double dual space X ##
(2) If an als X is algebraically reflexive then X = Wy + Vy.
(3) If an als X has a finite basis and X = Wy + Vy, then X is
algebraically reflexive. Hence we have,
(4) If an als X has a finite basis, then X = Wy + Vy if and only if
X 1s algebraically reflexive.
In Section 4, we also study the normed almost linear space(nals) and
show that the results described above are true for a nals X.
All spaces involved in this paper are over the real field R.
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2. Preliminaries of ALS

An almost linear space (als) is a set X together with two mappings
s: XxX - X and m: Rx X — X satisfying the conditions (L;)—(Lsg)
given below. For z,y € X and A € R we denote s(z,y) by =z + y
and m(A, z) by Az, when these will not lead to misunderstandings. Let
z,y,z € X and A p € R. (Ly) w+(y+2) = (v +y)+7; (L) a+y = y+;
(L3) There exists an element 0 € X such that + + 0 = « for each z € X
(Ly) 1z = x; (Ls) Mz +y) = Az + Ay; (Lg) 0 = 0; (L7) Mpx) = (Ap)z;
(Le) ( A+ p)z = Az +px for A >0, p > 0.

We denote —1z by —z, if there is no confusion likely, and in the sequel
z —y means T + (—y).

Note that (A + p)a = Az + pa for every scalars A, ;0 € R in a linear
space, and z — r need not be equal to zero for every z in an almost linear
space.

A nonempty subset " of an als X is called an almost linear subspace
of X, if for each y1,y2 € Y and A € R, s(y1,y2) € Y and m(\,y1) € Y.
An almost linear subspace ¥ of X is called a linear subspace of X if
s:Y xY - Y and m : R x Y — Y satisfy all the axioms of a linear
space.

For an als X we introduce the following two sets;

(2-1) Vi={reX:a—-2=0}

(2-2) Wy ={reX: z=-z}

Then, we have the following properties: (1) The set Vx is a linear
subspace of X, and it is the largest one. (2) The set Wy is an almost
linear subspace of X and Wy = {z — & : v € X}. (3) The als X is a
linear space <= Vy = X <= Wy = {0}. (4) Vx N Wy = {0}.

A subset B of the als X is called a basis for X if for 2ach 2 € X \ {0}
there exist unique subsets {1,b,,....0,} C B, {A1, A, ..., A} C R\ {0}

(n depending on x) such that + = > A;b;, where A; > 0 for those
1=1
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n

bi € Vx. We shall call such a representation x = Y A;b; the unique
i=1

positive representation of x by the basis B.

In contrast to the case of a Is, there exists an als which have no basis.

EXAMPLES 2.1. These examples are from [2].

(1) Let X = {2 € R: @ > 0}. Define s(a.y) = maz{z,y} and
m(A,z) =z for A # 0, m(0,2) = 0. The element 0 € X is 0 € R. Then
X is an als. We have Vy = {0} and Wy = X. It is clear that X has no
basis.

(2) Let X = {[a,b] CR:a < b}. Define s(4.B) = {a+b:a €A be
B} and m(A,A)={la:a€ A} for A, B€ X, A€ R. Then X is an als.
We have Vx = {{a} € X : ¢« € R} and Wy == {[~a,a) € X : a > 0}.
X =Wx+Vy and B = {[-1,1],{1}} is a basis ‘or the als X = Wy +Vy.
Furthermore, {[~1,1]} is a basis for Wy and {{1}} is a basis for Vx.
Consider the almost linear subspace Y = {[a,l] € X :a <0, b > 0} of
X. By = {[-1,0],[0,1]} is a basis for Y. Note that Wy = {l-a,a] i a >
0}, Vy = {{0}} and ¥ # Wy + V.

The following theorem will play an important role in our discussion:

THEOREM 2.2. Suppose an als X has a basis B. Then,

(1) [25 (2.8)] There exists a basis B' of X' with the property that for
each b’ € B'\Vx we have —b' € B "\Vx. Moreover card(B\Vy ) =
card(B’' \ Vx ). We shall call such a basis a symmetric basis.

(2) [2; (2.9)] Let B’ be a svimnetric basis for an als X. Then {v—a:
x € B\ Vx} isa basis for TVy.

(3) [2; (2.10)] There exist a norw ||-|| and a metric p on X for which
X is a snals.

(4) [25(2.11)] (a) The relations v +y = 2+ =, v,y,z € X imply that
y = z; (b) The relations wy + v; = uy + vy, w; € Wy, v; €
Vx, 1 =1,2 imply that w, = w,y and vy = vs.

(8) [2; (2.12)] There exists a basis B" of Wy + Vx with the property
that B" = B, U B,, where By is a basis for Wy and B, is a basis
for Vy.
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3. Algebraic reflexivity of ALS

Let X and Y be two almost linear spaces. A mapping T : X — Y is
called a linear operator if T(Ajwy 4+ Aywa) = AMiT(a1) + AT (a2) for all
Ai € Rand z; € X,7 = 1,2. An isomorphism T of an als X onto an als
Y is a bijective mapping which preserves the two algebraic operations of
an als that is, 7 : X — Y is a bijective linear operator. Y is then called
1somorphic with X.

LEMMA 3.1. Let T be a linear operator from an als X into an als Y.

(1) T(Vx) C Vy, T(Wx) C Wy.

(2) fX =Vy +Wx. then T(X) = T(Vx)+ T(Wx). In particular,
if T is an isomorphism, then Y = T(X) = Vy + Wy.

(3) If T is an isomorphism and X has a basis B, then T(B) is a basis

for Y.

PRrRooF. (1) Suppose @ € Vy. Then @ — & = 0. Therefore,

which shows that T'(«) € Vy-. Similarly, suppose @ € Wx. Then —x = 2.
Therefore,
~T(x)=T(—ux)=T(x),

which shows that T(z) € Wy-.

(2) If X = Vx + Wy, then every element + € X is of the form
v+w € Vy + Wy, and T(x) = T(v) + T(w).

(3) Let y € Y, and let T(x) = y. Then « has a positive representation
with respect to the basis B, say @ = > Ajr;, where a; € B, A\; > 0 for
those j for which @; € B\ V. Since T is a linear operator, y = T(x) =
T3 Ajz;) =3 ANT(aj).So,y =3 A;T(xj) is a positive representation
of y with respect to the subset T(B). It remains to show that such a
representation is unique. But, if y = ) u;T{x;) is another positive
representation, then a' = ) pjux, is another preimage of y, because
T(z') =T(> pjaj) = > ;T (x;) = y. Siuce T is one-to-one. we must
have r = 2', and hence \; = g for all ;. This establisLes the uniqueness
of the representation of y.
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Let X be an als. A functional f : X — R is called an almost linear
functional if the conditions (3.1) — (3.3) are satisfied.

(3.1) fle+y)= fla)+ fly) (v,y€X)
(3.2) fOx)y=X flx) (A20, 2 € X)
(3.3) flw)>0 (weWy).

The functional f : X — Ris called a lnear functional on X if it satisfies
(3.1), and (3.2) for each A € R. Then (3.3) is also satisfied. Note that
an almost linear functional is not a linear operator from X to R, but a
linear functional is a linear operator.

Let X# be the set of all almost linear functionals defined on the als X .
We define two operations s : X# x X# — X# and m : R x X# — X#
as follows:

s(fis f2)l@) = file) + () (fr, f2 € XF),
“m(\ f)e) = f(Ar)  (AER, feX¥)

for all 2 € X. Clearly, s(f1. f2) € X#, m(A f € X#, and %, m satisfy
(L1)— (Lg) with 0 € X# Dbeing the functional which is 0 at each « € X.
Therefore X# is an als. X¥# is called the algebraic dual space of the als
X. We denote s(f1, fo) by fi + f2 and m(A, f) by Ao f.

PROPOSITION 3.2. Let X be an alnost linear space. Then

Y# = Wes + Vys.

PROOF. For any f € X# define two functionals f;, fo on X by
fi=f-(=1of), fo=f+(-10f)
Then f; € Vys since fi+(—1ofi) =0, and fo € Wy« since —lof, = fa.
Clearly f = 30 fi + 1 o fa. Therefore X# = Wy + Vis.
Let B be a symmetric basis for an als X. For each a; € B, define

(3.4) XN =R

as follows: For a positive representation & = Z Nja; € X, let ai(x) =

J==1
Ai.
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THEOREM 3.3. Let B be a synunetric basis for an als X.
(1) The map 2} defined by (3.4) is an ahnost linear functional on X.
(2) Themap T : X — X# defined by

n

n
e — . !
T E Aji _g /\Jo.z,J
j:l j::l

Is an injective linear operator. In particular, it maps Vy, Wx
into Vx#, Wxs, respectively.

PROOF. (1) Clearly, ai(x + y) = /(2) + 2i(y) and 2j(Az) = Azl(x)
forz,ye X, A > 0.

We need to show that w/(w) > 0 for w € Wy. Since B is a symmetric
basis, {z —z : x € B\ Vy} is a basis for Wy by Theorem 2.2 (2).

Lo

Therefore,
w = Z /\j(.l'j -2y} = Z(/\J';L'j + /\j(“'.l‘j))
J€J 1eJ
with all z; € B\ Vy and A; > 0. Clealy, o/(w) = 0if¢ ¢ J. Otherwise,
T; = T or z; = —xy for some b € J. Either case. we have ri(w) =

Ak or 2);.

(2) We only need to show that T is iujective. Let >, Awx, be a positive
representation. Then

T(Z )x@',')(.z'j) = (Z/\, O.l‘:)(\l'j,
= riry)
=" Aoy

—_— /\/

Therefore, T(3", Aixi)(2;) = T(Y;pivi)ay) for all j implies Aj = p
for all 5. Consequently, S A, = >

An almost linear subspace T' of X# is said to be i0tal over X if the
relations xy, 2, € X, fla1) = flaes) for each f €T imply that a1 = xs.
Note that X# may be not total over the als X [Examples 2.1(1)]
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THEOREM 3.4. If an als X has a basis, then X# is total over X.

PROOF. Let B be a symmetric basis for X and let 2,y € X such

that f(x) fo1 each f € X#. By definition of basis we have
E AiTi, Yy = Z,u x; where x;, € B and Aj,u; > 0if z; € Vy.
= i=1

For each z; € B, let 2 be the almost linear functional on X deﬁned by
(3.4). Then z{(z) = A and 2i(y) = pi, 1 = 1,2, ...,n. Since f(z) = f(y)
forall f e X# )\ = Hiyt=1,2 .. n. Hence x = y.

We may go a step further and consider the algebraic dual (X#)# of
X# whose elements are the almost linear functionals defined on X#.
We denote (X#)# by X## and call it the second algebraic dual space of
the als X.

For z € X let @, be the functional ou X# defined, as in the case of
a Is, by

(3.5) Q.(f) = f(x) (f € X¥#).

Then Q, is an almost linear functional on X#. Hence Q@ is an element
of X## by definition of X## . This defines a mapping

(3.6) C:X — X##

by C(z) = Q.. C is called the canonical mapping of X into X##  Of
course, C' is defined for every als X. even when it does not have a basis.

Clearly, the canonical mapping C' of X into X## defined by (3.6) is
a linear operator.

If X is isoniorphic with an almost linear subspace of an als Y, we
say that X is embeddable in Y. In contrast to the case of a Is, als X
need not be embeddable in X## . Indeed, in Examples 2.1(1) X# = {0}.
Hence X## = {0}. However, in the case when the als X has a basis, X
is embeddable in X## by the following theorern.

THEOREM 3.5. If an als X has a basis, then the canonical mapping
C:X — X##* |sinjective.
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PROOF. If an als X has a basis, then X# is total over X by Theorem
3.4. Hence, we have Q, = Q, <> Q.(f) = Qu(f)forall fe X# —
f(z) = f(y) for all f € X# <= 2 =y. Therefore C is mjective.

If the canonical mapping C' of an als X into X## defined by (3.6)
is an isomorphism, then X is said to be algebraically reflexive. From
Lemma 3.1 and Proposition 3.2, we have

THEOREM 3.6. If an als X is algebraically reflexive, then

X =Wy +T%.

LEMMA 3.7. Let X = Wix + V. be an als which has a finite basis. If
= {z1,..., 7.} is a basis for the als X such that B C Wx U Vy, then
B’ = {z},...,z,,} given by (3.4) is a basis for the algebraic dual X# of
X.
PRrROOF. In the light of Lemma 3.1 (3), it is enough to prove that the
linear operator T : X — X# is surjective. For a gwen f e X#, let
f(zi) = a; for each &, € B. If #; ¢ Uy then 2; € W, so that o > 0.
(This step is not true without the asswmption B C Wy U Vy which
18 guaranteed by X = Wx + Vy). For every positive representation

T = Z/\:c, X (sothat \; > 0 /f x; € V), we have

since f is an almost linear functional on X. Let x; € V. Then 2} € Vs
by Theorem 3.3(2). So, &% is a linear functional on X

n
Now we shall calculate > (e oat)a). Suppose v; € Vy. Then
i=1
zi(eiz) = a; - ai(x) since 2’ is a linear functional, Suppose x; € Wy.
Then zi(a;z) = «; - i(2) siuce a; > 0. In any case. we have o) =
a; - z}(x). Consequently,

n

i:(aio;z'i)(a'):i;z’ﬁ-(n,.z'):Za, Za A
i=1 i=1

=1
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We have shown that

’ n
f = E aioxt =T g ;e ).
1=1

=1
Therefore, T is surjective, and B’ is a basis for the als X#.

REMARK. In Lemma 3.7, X = Wy 4+ Vy is essential. Indeed, in
Examples 2.1(2) Y = {[a,0] : « <0, b > 0} is an als and B = {b; =
[ 1,0],b; = [0, 1]} is a basis for Y. Note that Wy = {[~a,a] : a > 0},

&y = {{0}} and ¥ # Wy + ¥y, But B' = {#,b,} is not a basis for Y'#.
For example, the element f = b} — (=10 #) € Y# cannot be written
as a positive representation of §| and b): Suppose B’ = {b' 05} were a
" basis for Y#. Then f= (11 0 b} + ay ol with l)oth a;'s non-negative,
Now (a; o b + a0 by)(by) = az > 0. However, f(by) = —1. Therefore,
such a;’s cannot exist.

THEOREM 3.8. Let an als X have a finite bzsis and X = Wy + Vx.
Then X is algebraically reflexive.

PROOF. We may assume that B = {« l,‘ 2. .... &y } 1s & basis for the als
X such that B C Wy UVy by Theorem 2.2(5 ) Let T: X — X# be the
linear operator given in Theorem 3.3. Th( n the set B = {2, 24, ..., 2},
T(x;) = 2} is a basis for the als X# Ly Lemma 3.7. We apply the same
theorem to the als X# to get a linear operator. Lec T . X#* o X##
be the linear operator. Then the set B = {af, 24, ..., 2"}, T'(2") = 2"
is a basis for the als X##. Clearly, ., = T'T(a,). Hence the canonical
mapping C defined by (3.6) is an isomorphism. since C' is a composite
of two isomorphisms.

By Theorem 3.6 and Theorem 3.8, we have

COROLLARY 3.9. Let an als X have a finite vasis. Then X = Wy +
Vx if and only if X is algebraically reflexive.
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4. Reflexivity of NALS

A norm on the als X is a functional || - || : X — R satisfying the
conditions (N;)—(N3) below. Let 2.y, z € X and A € R. (N) fla—2z] <
Nz = yll + lly — =ll; (N2) A2l = [Ml|a]l: (V) lx]l = 0iff 2 = 0.

Using (N7) we get

(4.1) e+ yll < Jell + llyll (2y € X)

(4.2) le =yl 2 el = Nyl 2,y € X)

By the above axioms it follows that ||| > 0 for each € X

An almost linear space X together with [[-]| : X — R satisfying
(N1) — (N3) is called a normed almost linear space (nals).

When X is a nals, for f € X# define. as in the case of a normed linear
space,
(4.3) 1A= sup{[f(2)] v € X, ||| < 1},
and let
Xt = {feX*|f] < o).

Then X* is a normed almost linear space(3], called tle dual space of X
We denote the dual space (X*)* of X* Ly X** and call it the second
dual space of X .

PROPOSITION 4.1[4]. Let (X, | -||) be a nals. Then for each « € X
there exists f, € X* with ||f,|| = 1 such that f.(x) = Il

PROPOSITION 4.2[2]. Let a nals X have a finite basis. Then
X#* =

An isomorphism T of a nals X onto a nals Y is a bijective linear
operator T': X — Y which preserves the norm, that 13, for all x € X,

1T = Il
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X is then called isomorphic with Y. If a nals X is isomorphic with an
almost linear subspace of a nals Y, then we say that X is embeddable in
Y.

For z € X let @, be the functional on X* defined, as in the case of
an als, by

(4.4) Q:(f) = flr) (fe X
Then @, is an almost linear functional on X* and
(4.5) Qe < Jle]l.

Hence @, is an element of X**. by definition. of X**. This defines a
mapping
(4.6) C:X - X*
by C(z) = Q.. Cis called the canonical mapping of X into X **.

If the canonical mapping €' of a nals X into X** defined by (4.6) is
an isomorphism, then X is said to be reflezive.

As in the case of an als, X* = T1'yv+ + Ve for the nals X. Thus we
have the following theorem.

THEOREM 4.3. If a nals X is reflexive, then X = Wy + Vy.

THEOREM 4.4. Let a nals X have a finite basis and X = Wy + Vy.
Then X is reflexive.

PROOF If a nals X has a finite basis, then X# = X* by Proposition

. Hence the canonical mapping €' defined by (4.6) is bijective linear
opelatol by Theorem 3.8. We must show that ' preserves the norm.

that is, HQ I = llz|l where Q, is the functional on X* defined by (4.4).
From (4.5) ||Q.|] < |lzfl. And, Proposition 4.1 implies that ||Q.|| =
sup{|c2 e v A1 <) = swplift] € X7l 1)
> fo(2) = |Jz|l. Hence ||C'(x)]] = ||.¢[|. This completes the proof.

THEOREM 4.5. Let a nals X Lave a finite basis. Then X = Wy + Vy
if and only if X is reflexive.
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