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SINGULARITY OF A COEFFICIENT MATRIX

JOONSOONK LEE

ABSTRACT. The interpolation of scattered data with radial basis func-
tions is known for its good fitting. But if data get large, the coefficient
matrix becomes almost singular. We introduce difterent knots and nodes
to improve condition number of coeflicient matrix The singulaity of new
coeflicient matrix is investigated here.

1. Introduction

Let {;: ¢ =1,2,...,n} be a set of n distinct points in R™. Let || - ||
be any norm on R™, and consider the functions

gi(x) = |la — x| J=12....n

If these “radial basis functions” are employed in interpolating arbitrary

data at the points 23, x2,...2,, then the interpolating functions will be
n 3

of the form Z]-:l c;jg;(r) for unknown cjs. Then we have to invert the

_coefficient matrix 4 whose elements are

A=l — a5l

It was proved by Schoenberg (3] that A is nonsingular if || - || is the
Euclidean norm on R™. See also [2] for more general results. In this
paper we select a different set of points y; to define the basis functions,
but retain the points 2; as the interpolation nodes. The new coefficient
matrix is given by '

Aij = Jles — g5l

For the simplicity we call y's knots and ='s nodes. Although 4 is nonsin-
3 Y 1 g
gular for the Euclidean norm, A4 can be singular for certain configuration
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of knots. We investigate the position of knots in R' which ensures the
nonsingularity of A.

2. Main results

From now on we assume that 2,4, € R! and 0 = 7, < Ty < 0 <
Tp =1and y; <y < - < y,. Also we assume that y; € [21, 2] for all
1.

LEMMA 1. Ify, € [2j,0j41], then the m-th coluian of A is a linear
and convex combination of the j —th and the (j + 1) - st columns of 4.

PROOF. Let hjy =a; —aj-1 and a,, = y, — ;. Then the m — th
column of A has elements

lzi = ym| = loi — (Aaj + pajpr)] = [Ma, — 25) + pley — 2541)]
May = x5) + pla — j41) fi>7+1
May — i)+ pla41 — 2) if 7«

J

(WA

where

Ti+1 — Ym Um
A= L T Ym g dm

Ti+1 — £y hJ

Ym — Ty (Im
po=——— =

Tjp1 — T I

Hence the m — th column of 4 has elements
Ay Uy
1—— A — | A;; 4
( ]'J ) 2 ( hj ) Mk

Now we consider a configuration of the form y; € [v1,22), yi €

(Tic1,Tipr) fori = 1,2.....n and Yu € (Tn-1.2»]. Let C; and C; be
the colums of 4 and A respectively. We introduce some notations by
letting e; = |v; — y;|/h; and d; = &, — yi|/hi_,. Then we can easily see
that

Ci=diCizy + (1 —d)C;y if yi € (r;-1.2;] and

Ci=(1-e)Ci+e,Ciyr if y; € [0s,2541)

Before we go further we need a definition and some remarks.
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DEFINITION. Let (x,,2p41) be an open subinterval containing no y's
in it and (24, r441) be the next such open subinterval. Then [z,+1, x,]
is called a separated interval.

Since the complement of the union of separated intervals contains no
knots, each y; belongs to some separated interval.

REMARK 1. The separated interval [x,41, 2] contains y,4+1,..., Y-

REMARK 2. If [2,41,¢,] is a separated interval, then exactly one of
the intervals (2,41, Tp42), - < [2g—2, 2 4=1), [¥4—1. 4] contains two knots.
Indeed, suppose there are more than one [2;, x4 ) (orfr -1, x4]) contain-
ing two knots in [.‘l?l,+1,.l?q]. Since every (@i, Lit:) (or a4—1,ry) contains
at least one node, the separated interval [2,41.0,] contains more than
q — p knots.

LEMMA 2. Let [@pq1.20p4m] be any subintesval and (€41, Tgte] be
a »separatedwinterva] with p+m < ¢+ 1. If {C,)+1,...,C71,+m}v and
Coit....,Corq} are linearly independent sets respectively, then {Cpy1.
g+1 ~g+ : 1 1 . p+
oy Coams Cogny oo Cygt ) Is a linearly independent set.
p+ q+ q+ . 1

and Cyt1,. .., Copr i span{Coqr.. ... Cyyr} since yo1 € [Tg41, Tg42)-
Since p + m # ¢ + 1, the result follows nnmediately. [

Proor. The columns Cp+1 ..... Cpm liein span{Cy, Cpyy, . - -, Cpym}

THEOREM 1. The matrix A is nonsingular if and only if y; € [x1.,x2).
yi € (xi1,Tip1) fort=2.3,....n—1andy, € (Tne1s0).

PROOF. Suppose one of the knots does not satisfy the above condi-
tion. We will consider only ¢ = 2,3,. .., n—1since y; and y, follow a sim-
ilar analysis. Suppose y; € (w;—1.vi41). Then cither y; € [x1,.. STy
or y; € [Tit1,...,2,). This implies that eitler C.,.Cy....,C; lie in
span{Cy,Cy,....CiyJor Ci. .. .. C, ispan{C +1....,C,} by Lemma
1. Both cases imply that the dimension of the column space of A is less
than n.

Now assume that all knots satisfy the above condition. Let [x,41. ]
be any separated interval. By Lemma 2, we only need to show that
{C'p+1, ce C'q} is linearly independent. Let [a4. @x41) ([a‘q_l,.rq] if b=
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g — 1) be the subinterval containing two ys. Suppose that
ap41 [(1 — €p41)Cpi1 + €110 42] +
ap+2 [(1 = €p42)Cpy2 + €p12Cp43] + ...
+ar[(1 = ex)Ck + €xChar] + ais1 [deg1 Ck + (1 = dig1)Crpa] +
ak2 [di42Crp1 + (1 = Dga)Croga] F ...
+ ay [d,Cyoy + (1 = dy)C,] = 0.
We will show that ¢; = 0 for all i.
After rearranging the above equation, we will get
[ap+l(1 - ep-H,)] Cp-H + [(‘1J+1511+1 + "1)+2(1 — Cp42 )] Cp+2 + ...
+ [ar—1€x—1 + ar(l —e)) + ar1dit1] Cr
+ [arer + arg1(1 — disy ) + ahgadipe2] Crpr + -+ ar(1 = di)Cr = 0.
(For k = ¢ — 1,dky2 = 0. For kb = p+ 1,ex-; = 0.) Then ap41 =
0 since 1 — e,43 # 0 and «, = 0 since 1 — dy # 0. Successive steps show
that a,42 = 0,a4-1=0,...,¢4_y = 0.ax42 = 0. We only need to show
that ax = 0 and ax4; = 0. But
he = Lok = gi| = [ektr = yesa]
I

£ 0.

1——6k —‘(1k+1 =

This implies that ax = 0,a44, = 0. 0

3. The inverse of an interpolating matrix

Using the inverse of 4 we can give an explicit form of A=!. The
inverse of a matrix A is given in [1] by

hy —-1 1 1
(o @, 000 3 )
1 7 h 1
— _lth 1 0 0
2h] 2’71’12 2]72
6 1 hpa + hp—1 1
20, _y 21’::—2]' n—1 2’?41—2
1 1 Py —1)
\ 2 0 o 0 'Zh,,_,‘ 2hn

We let R;, R; be the i — th rows of 4! and 471 respectively.
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THEOREM 2. Let y1 € [@1,22),yi € (¥i—1,@i41) fore = 2,...,n —
1l and y, € (z, — 1,z,]. Let |2, 7441) be the unique subinterval con-
taining two knots. If we assume that y,, belongs to the separated interval
[Zp+1,24], then

( 1

1—em

1-d 1)
(A) Sy — (L) Tpyr fm=k
— l—ek—-dk+1 1‘ﬁ'k_dk+1

Sm ifp+1§771$k—]

Rm =9 1—ex €
—_— e ) Ty = | e ) S =k +1
(l‘ek"dk-{»l) S (1—6L-—dk+1> eoRm *
1 .
\T-:I;Tnl lfk+2§m§q
where
m—(p+1)
S-m = Z (_l)lam:}Rm—i
=0
g—m
Tm = Z(_l)lbmi‘lRmﬁ—i
1=0
and
€g...C6¢ ds...dg
(L::{(l—ﬁs)---(l“ﬂt) V=¢ (1-d,)...(1-4dy)
1 ifs>t 1 ifs>t

. PROOF. We will show that It - Ci = dmi. Ifi:<p+1ori>gq,
C_',‘ € span{Cy,...,C,} or C; € span{Cyy1... ,Cn} repectively. But
Ry, is a linear combination of R,41,.... R,. This implies that

Rn-Ci=0 Hi<p+1 ori > gq.

We assume that p +1 < i < ¢. We will trear the case ¢ = k. Other
cases (p+1<:1<k~1,i=Lk+1.k+2<7<g)lollowa similar analysis.
If: =k, then C¢ = (1 — ex)Cr + fikgk.}.]. fp+l<m<hk-1

ork+2<m<ygq Rn-Cr=0since R, is a linear combination of
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Ri,Ry...,Rj_y for p+1 < m < k-1 and a linear combination of

Riy2,..., R, for E+2<m<q.
Tm=1FL,

= = 1-— (lk+] (lk+]
By - Ci (1 —fik“'(lk+1> ( i) (l—t'k—dk.H €k

1-— €L — dk-}-l

=1

1 —er —dir

fm=k+1,

Rk+l - Cp = <—'—'————-(1 k)¢ ) - (—-—-—ek(l — ek)—) =0. O

l—er— dk+1 1—¢p - dk—d
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