PERMUTATION POLYNOMIALS OF THE TYPE $x^{1+\frac{g-1}{m}} + ax$

SEOG YOUNG KIM AND JUNE BOK LEE

ABSTRACT. In this paper, we prove that $x^{1+\frac{q-1}{5}}+ax$ $(a\neq 0)$ is not a permutation polynomial over F_{q^r} $(r\geq 2)$ and we show some properties of $x^{1+\frac{q-1}{m}}+ax$ $(a\neq 0)$ over F_{q^r} $(r\geq 2)$.

1. Introduction

Let F_q denote the finite field of order $q = p^n$, p a prime number. A polynomial $f(x) \in F_q[x]$ is called a permutation polynomial of F_q if f(x) induces a 1-1 map of F_q onto itself.

In 1962, Carlitz[1] proved that the polynomial $x^{1+\frac{q-1}{2}} + ax(a \neq 0)$ is not a permutation polynomial over any field F_{q^r} $(r \geq 2)$. Then he rasied the question of whether the same conclusion is also held for the polynomial $x^{1+\frac{q-1}{m}} + ax$ $(a \neq 0)$ with $m \geq 3$. In 1987, Daqing Wan[2] gave an answer to this question in the case $p \neq 2$, m = 3.

In this paper, we give an answer to question for $p \neq 2$, m = 5, and we will discuss some facts about $x^{1+\frac{q-1}{m}} + ax$ $(a \neq 0)$, where $q \equiv 1 \pmod{m}$.

In the following we assume that $q = p^n$, p a prime unless stated otherwise.

LEMMA 1.1 ([2]). Let 1 < k < q, $q - 1 = k([\frac{q-1}{k}] - t) + tk + j$, $0 \le j < k$, $0 \le t < [\frac{q-1}{k}]$. Put $J = [\frac{q-1}{k}] - t + tk + j$ and suppose $p \nmid {j \choose tk+j}$. If q - 1 > (k - 1, q - 1)((t+1)k - 1), then $f(x) = x^k + ax(a \ne 0)$ is not a permutation polynomial over F_q .

Received May 20, 1995. Revised June 26, 1995.

¹⁹⁹¹ AMS Subject Classification: 11T06.

Key words and phrases: Finite Fields, Permutation Polynomial.

THEOREM 1.2 ([4]). Let 1 < k < q, k be not a power of p, $q \ge (k^2 - 4k + 6)^2$, then $x^k + ax$ ($a \ne 0$) is not a permutation polynomial over F_q .

THEOREM 1.3 ([5]). Let p be a prime number, and

$$m = \sum_{i=0}^{l} m_i p^i \quad \text{and} \quad k = \sum_{i=0}^{l} k_i p^i$$

be representations of m and k to the basis p, that is, $0 \le m_i$, $k_i < p$. Then

$$\binom{m}{k} = \prod_{i=0}^{l} \binom{m_i}{k_i} \mod p.$$

THEOREM 1.4 ([3]). If k is a divisor of q-1, then there is no permutation polynomial of degree k over F_q .

2. Results

We discuss whether or not $x^{1+\frac{q-1}{m}} + ax$ is a permutation polynomial over F_{q^r} $(r \geq 2)$. First, we know that if $r \geq 4$ then $x^{1+\frac{q-1}{m}} + ax$ $(a \neq 0)$ is not a permutation polynomial over F_{q^r} because of the following and Theorem 1.2;

$$\left(\left(1 + \frac{q-1}{m}\right)^2 - 4\left(1 + \frac{q-1}{m}\right) + 6\right)^2 \le \left(\frac{q-m-1}{m} + \sqrt{2}\right)^4$$

$$\le \left(\frac{q+m-1}{m}\right)^4 < q^r \text{ for } r \ge 4.$$

Thus, we need only consider the cases r = 2 and r = 3.

THEOREM 2.1. $x^{1+\frac{q-1}{m}} + ax$ $(a \neq 0)$ is not a permutation polynomial over F_{q^2} if $p > m^2 - m$ and $q > m^3 - 2m^2 - m + 1$ with $m \geq 3$.

PROOF. Let $k=\frac{q+m-1}{m}$. Since $q\geq m^3-2m^2-m+1, \left[\frac{q^2-1}{k}\right]=mq+(m-m^2)$. Then

$$q^{2} - 1 = k \left(\left[\frac{q^{2} - 1}{k} \right] - t \right) + tk + j$$

$$= k(mq + (m - m^{2}) - t) + tk + j$$

$$= q^{2} - (m - 1)^{2} + j, \text{ where } j = (m - 1)^{2} - 1.$$

Let
$$J = \left[\frac{q^2 - 1}{k}\right] - t + tk + j$$
. Then

$$J = mq + (m - m^{2}) - t + t \left(\frac{q + m - 1}{m}\right) + (m - 1)^{2} - 1$$

$$= mq - m + t \frac{q - 1}{m},$$

$$tk + j = t \left(\frac{q + m - 1}{m}\right) + (m - 1)^{2} - 1$$

$$tk + j = t\left(\frac{m}{m}\right) + (m-1)^{2} - t\left(\frac{q+m-1}{m}\right) + m^{2} - 2m.$$

Take t = 0, then

$$J = mq - m$$

$$= (m-1)q + (p-1)\frac{q}{p} + \dots + (p-1)p + p - m,$$

$$tk + i = m^2 - 2m.$$

Since $p>m^2-m$, $\binom{J}{tk+j}\not\equiv 0 \mod p$ by Theorem 1.3. Note that $q^2-1>(\frac{q-1}{m})(\frac{q-1}{m})=(\frac{q-1}{m})^2$. Now, Lemma 1.1. can be applied. \square

By the same method of the proof of Theorem 2.1 we can prove the following:

THEOREM 2.2. $x^{1+\frac{q-1}{m}} + ax$ $(a \neq 0)$ is not a permutation polynomial over F_{q^3} if $p > m^2 - m$, and $q > m + (m-1)(m(m-1)^2 - 1)$ with $m \geq 3$.

Theorem 2.1 and 2.2 have a lower bound of p. Thus we can not say that $x^{1+\frac{q-1}{m}} + ax$ is not a permutation polynomial over F_{q^r} for each m. However when m = 5, we can say that $x^{1+\frac{q-1}{m}} + ax$ is not a permutation polynomial over $F_{q^r}(r \ge 2)$ for all $p \ne 2$, $q \equiv 1 \pmod{m}$.

THEOREM 2.3. Let $q \equiv 1 \pmod{5}$, $p \neq 2$, then $x^{1+\frac{q-1}{5}} + ax$ $(a \neq 0)$ is not a permutation polynomial over any finite field F_{q^r} $(r \geq 2)$.

We need some Lemmas to prove Theorem 2.3.

LEMMA 2.4. Let p = 17 or 19, q > 71. then

$$\binom{6q-6}{q+19} \not\equiv 0 \mod p.$$

PROOF. We have

$$6q - 6 = 5q + (p - 1)\frac{q}{p} + \dots + (p - 1)p + p - 6,$$

$$q + 19 = q + 17 + 2 \quad \text{for} \quad p = 17$$
or
$$q + 19 = q + 19 \quad \text{for} \quad p = 19.$$

Then by Theorem 1.3, we obtain

$$\binom{6q-6}{q+19} \equiv \binom{5}{1} \binom{p-1}{1} \binom{p-6}{2} \not\equiv 0 \mod p \quad \text{if} \quad p = 17$$

and

$$\binom{6q-6}{q+19} \equiv \binom{5}{1} \binom{p-1}{1} \not\equiv 0 \mod p \quad \text{if} \quad p=19. \quad \Box$$

LEMMA 2.5. Let p = 3, q > 71, then

$$\binom{8q-8}{3q+27} \not\equiv 0 \mod p.$$

PROOF. This follows from Theorem 1.3.

LEMMA 2.6. Let p = 17, q > 321, then

$$\binom{5q^2 - 3q - 2}{17q + 3} \not\equiv 0 \mod p.$$

PROOF. We have

$$5q^{2} - 3q - 2 = 4q^{2} + (p-1)\frac{q^{2}}{p} + \dots + (p-4)q + (p-1)\frac{q}{p} + \dots + (p-1)p + p - 2.$$

Then by Theorem 1.3, we have

$$\binom{5q^2 - 3q - 2}{17q + 3} \equiv \binom{p - 1}{1} \binom{p - 2}{3} \not\equiv 0 \mod p \text{ for } p = 17. \quad \Box$$

Similarly, we can prove the following two lemmas.

LEMMA 2.7. Let $p \neq 3, 17, 19$, and q > 321, then

$$\binom{5q^2 - 4q - 1}{16q - 1} \not\equiv 0 \mod p.$$

LEMMA 2.8. Let p = 3 or 19, $q \ge 321$, then

$$\binom{5q^2 - q - 4}{19q + 11} \not\equiv 0 \mod p.$$

PROOF. of Theorem 2.3: We already showed that if $r \geq 4$, then the Theorem holds.

Now assume that r = 2. If q > 71, then

$$q^{2}-1 > \frac{q-1}{5} \left(16 \left(\frac{q+4}{5}\right) - 1\right)$$
$$> \frac{q-1}{5} \left(6 \left(\frac{q+4}{5}\right) - 1\right)$$
$$> \frac{q-1}{5} \left(\frac{q+4}{5} - 1\right).$$

and

$$q^{2} - 1 = \frac{q+4}{5} \left(\left[\frac{q^{2}-1}{k} \right] - t \right) + t \left(\frac{q+4}{5} \right) + j$$
, where $k = \frac{q+4}{5}$
= $q^{2} - 16 + j$.

Then j = 15, $J = 5q - 5 + t(\frac{q-1}{5})$, and $tk + j = t(\frac{q+4}{5}) + 15$ in Lemma 1.1. We take t = 0, and so J = 5q - 5, tk + j = 15. According to Theorem 1.3,

$$\binom{j}{tk+j} \equiv \binom{5q-5}{15} \not\equiv 0 \mod p.$$

if q > 71 and $p \neq 3,17,19$, so in this case our result follows. If p = 3, q > 71, then we can take t = 15 and Lemma 2.5 implies it. If p = 17 or 19, q > 71, then we can take t = 5 and Lemma 2.4 implies it. If q = 41 or 61, then we can take t = 0 and Lemma 1.1 implies it. If q = 11 or 31, then Theorem 1.2 implies it. If q = 71, then $k = 1 + \frac{q-1}{5} = 15$ and k divides $q^2 - 1 = 5040$ and so Theorem 1.4 can be applied.

Assume that r=3. If $q \le 321$, then when $k=1+\frac{q-1}{5}$, $(k^2-4k+6)^2 \le q^3$, and by Theorem 1.2, our result follows. Let q>321, then

$$q^{3} - 1 > \frac{q-1}{5} \left(95 \left(\frac{q+4}{5}\right) - 1\right)$$

> $\frac{q-1}{5} \left(80 \left(\frac{q+4}{5}\right) - 1\right)$.

Now $q^3 - 1 = \frac{q+4}{5}(5(q^2 - 4q + 16) - 1) + \frac{q+4}{5} - 65$, $j = \frac{q+4}{5} - 65$. If $p \neq 3, 17, 19$, then taking t = 79

$$J = 5(q^{2} - 4q + 16) - 1 + \frac{q+4}{5} - 65 - t + t\left(\frac{q+4}{5}\right)$$

$$= 5q^{2} - 20q + 14 - t + (t+1)\frac{q+4}{5}$$

$$= 5q^{2} - 4q - 1,$$

$$tk + j = t\left(\frac{q+4}{5}\right) + \frac{q+4}{5} - 65$$

$$= 16q - 1.$$

According to Lemma 2.7,

$$\binom{J}{tk+j} \equiv \binom{5q^2-4q-1}{16q-1} \not\equiv 0 \mod p.$$

Hence Lemma 1.1 shows that f(x) is not a permutation polynomial over F_{q^r} . If p=3 or 19, taking t=94, then $J=5q^2-q-4$, tk+j=19q+11. By Lemma 2.8, it can be proved. If p=17, taking t=84, then $J=5q^2-3q-2$, tk+j=17q+3. By Lemma 2.6, it can be proved. Thus Theorem 2.3 is proved completely. \square

Though $x^{1+\frac{q-1}{m}} + ax$ is not a permutation polynomial over $F_{q^r}(r \ge 2)$ for m = 2, 3, and 5, we can not say that it does hold for m = 4. However, if $p \ne 2, 3, 5$, then it is true for m = 4. And because 2, 3, and 5 are prime numbers, we may assume that it is true for m = 7 or another prime numbers, but it is still unproved.

References

- 1. Carlitz, L., Some theorems on permutation polynomials, Bull. Amer. Math. Soc 68 (1962), 120-122.
- 2. D. Wan, Permutation Polynomial over Finite Fields, Acta Mathematica Sinica, New Series 3 (1987), 1-5.
- Lidl, R. & Neiderreiter, H., Finite Fields., Encyclopedia Math. Appl. 20 Addison-Wesley (1983), Chap 7.
- 4. Neiderreiter, H. & Robinson, K. H., Complete mappings of finite fields, J. Austral. Math. Soc. Ser.A 33 (1982), 197-212.
- Van Lint, L. H., Introduction to Coding Theory, Springer-Verlag, New York, 1982.

Department of Mathematics Yonsei University Seoul,120-749, Korea