SOME PROPERTIES OF VERMA MODULES OVER AFFINE LIE ALGEBRAS

WANSOON KIM

ABSTRACT. For nonintegrable weight $-\rho$, some weight multiplicities of the irreducible module $L(-\rho)$ over $A_{(1)}^{(1)}$ affine Lie algebras are expressed in terms of the colored partition functions. Also we find the multiplicity of $L(-\rho)$ in the Verma module $M(-\rho)$ for any affine Lie algebras.

1. Introduction

For integrable highest weight modules over symmetrizable Kac-Moody algebras, a character formula called the Weyl-Kac character formula, was obtained by Kac. The Weyl-Kac character formula applied to certain modules gives Lie-algebraic proofs of some classical identities like Jacobi's triple product identity.

In [5], a conjecture on the character formula of the nonintegrable highest weight module $L(-\rho)$ for affine Kac-Moody algebras i.e., the irreducible quotient of the Verma module $M(-\rho)$, was proved. And also some properties concerning embeddings of $M(-\rho)$ were given.

In this note we first consider an affine Kac-Moody algebra G(A) whose corresponding Cartan matrix A is

$$\begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}.$$

We say that this affine Kac-Moody Lie algebra is of type $A_{(1)}^{(1)}$. And we present a concrete form of the character formula of the irreducible

Received February 8, 1995. Revised August 15, 1995.

¹⁹⁹¹ AMS Subject Classification: 17B10, 17B65.

Key words: affine Lie algebras, Verma modules, weight multiplicities.

This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1993.

quotient $L(-\rho)$ over an affine Lie algebra of this type, where weight multiplicities are expressed in terms of the colored partition functions. We use the character formula in [5] and the explicit expressions of generalized partition functions proved by Kac and Peterson in [4].

Secondly we consider some Verma Modules over any affine Kac-Moody Lie algebra and we describe multiplicities of the irreducible quotients that occur in the Jordan-Hölder series of these Verma modules.

Terminologies and notations in this note are standard and they may be found in [2].

2. Preliminaries

Let G(A) be a Kac-Moody Lie algebra associated to a symmetrizable generalized Cartan matrix A. Then G(A) has a root space decomposition $G(A) = H \oplus_{\alpha \in \Delta} G_{\alpha}$, where $\Delta \in H^*$ is the root system which is equipped with a basis Π . Elements in Π are called simple roots. We denote the set of positive real(respectively, imaginary) roots by Δ_{re}^+ (respectively, Δ_{im}^+). There exists an invariant bilinear form (\cdot, \cdot) on G(A) which is nondegenerate on H. And this induces a nondegenerate bilinear form (\cdot, \cdot) on H^* .

For $\lambda \in H^*$, let $M(\lambda)$ be the Verma module of G with highest weight λ . The character of $M(\lambda)$ is defined to be the formal sum

$$ch\ M(\lambda) = \sum_{\mu \in H^{\bullet}} \dim\ M(\lambda)_{\mu} e^{\mu},$$

where $M(\lambda)_{\mu} = \{ v \mid h \cdot v = \mu(h)v, \text{ for all } h \in H \}$. When $M(\lambda)_{\mu} \neq \emptyset$, we call μ a weight of $M(\lambda)$ and $\dim M(\lambda)_{\mu}$ the weight multiplicity of the weight μ . The following is well known:

$$\begin{split} ch\ M(\lambda) &= \epsilon^{\lambda} \sum_{\alpha \in \Delta_{+}} K(\lambda - \mu) e^{-\mu} \\ &= \epsilon^{\lambda} \prod_{\alpha \in \Delta_{+}} (1 - \epsilon^{-\alpha})^{-\dim G_{\alpha}}, \end{split}$$

here K is the generalized partition function (see [2]).

The Verma module $M(\lambda)$ has a unique maximal submodule and the corresponding irreducible quotient is denoted as $L(\lambda)$. And the character of $L(\lambda)$ is defined in the same way as for Verma module $M(\lambda)$.

Let $\mu \in H^*$. A local composition series of Verma module $M(\lambda)$ at μ is a decreasing filtration $M(\lambda) = M_0 \supset M_1 \supset \cdots \supset M_t = 0$ of submodules of $M(\lambda)$ such that either $M_i/M_{i+1} \cong L(\beta)$ for some $\beta \geq \mu$ or $(M_i/M_{i+1})_{\beta} = 0$ for all $\beta \geq \mu$. The number of irreducible quotients isomorphic to $L(\mu)$ appearing in a local composition series of $M(\lambda)$ at μ is called the multiplicity of $L(\mu)$ in $M(\lambda)$. We denote this multiplicity by $[M(\lambda) : L(\mu)]$ (see [1]).

Given a generalized Cartan matrix A in case there is a nonzero column vector u of nonnegative integers such that Au = 0, the corresponding Lie algebra is called an affine Kac-Moody Lie Algebra. For an affine Kac-Moody Lie algebra every positive imaginary root is an integer multiple of the smallest positive imaginary root, which is denoted as δ .

Now, we fix a linear function $\rho \in H^*$ such that $2(\rho, \alpha) = (\alpha, \alpha)$ for all $\alpha \in \Pi$. The following results were proved by J. M. Ku (see [5]).

PROPOSITION 2.1. Let G(A) be an affine Kac-Moody Lie Algebra. Then the character formula of the irreducible G(A) module $L(-\rho)$ over G is given by:

$$ch \ L(-\rho) \ = \ \epsilon^{-\rho} \prod_{\alpha \in \Delta^{r\epsilon}_+} (1 - \epsilon^{-\alpha})^{-\dim G_\alpha}.$$

PROPOSITION 2.2. Let G(A) be an affine Kac-Moody Lie algebra. Then

$$[M(-\rho): L(-\rho-n\delta)] = \dim Hom_G (M(-\rho-n\delta), M(-\rho)).$$

3. Main Theorem

In this section, we first consider an affine Lie algebra G(A) of type $A_{(1)}^{(1)}$. There are two simple roots α_1, α_2 and the set of roots are described:

$$\Delta_{re}^{+} = \{j\alpha_{1} + (j+1)\alpha_{2} \quad and \quad (j+1)\alpha_{1} + j\alpha_{2} , \ j = 0, 1, 2, \cdots \},$$

$$\Delta_{im}^{-} = \{j\alpha_{1} + j\alpha_{2} , \ j = 0, 1, 2, \cdots \}.$$

All root spaces are one dimensional. The smallest positive imaginary root δ is $\alpha_1 + \alpha_2$.

In the next theorem we show that the character of the irreducible module $L(-\rho)$ is linked to colored partition functions. First we recall the definition of the Euler function $\phi(q)$:

$$\phi(q) = \prod_{n>1} (1-q^n) = \sum_{n\in\mathbb{Z}} (-1)^n q^{\frac{1}{2}n(3n+1)}.$$

And the colored partition functions are functions defined to be functions $p^{(l)}(n)$ described in the following identity:

$$\sum_{n\geq 1} p^{(l)}(n)q^n = \prod_{n\geq 1} (1-q^n)^{-l}.$$

THEOREM 3.1. Let G(A) be an affine Lie algebra of type $A_{(1)}^{(1)}$ and let $L(-\rho)$ be the irreducible G(A) module. Then

$$\dim L(-\rho)_{-\rho-l\delta} = \sum_{m+\frac{3n^2+n}{2}=l} \sum_{j\geq 0} (-1)^n (-1)^j p^{(3)}(m-\frac{1}{2}j(j+1)).$$

PROOF. Since dim $G_{\alpha} = 1$ for any root $\alpha \in \Delta$, by Proposition 2.1 we have

$$ch\ M(-\rho)\ =\ e^{-\rho}\prod_{\alpha\in\Delta^+}(1-e^{-\alpha})^{-\dim\ G_\alpha}\ =\ ch\ L(-\rho)\ \prod_{n>1}\,(1-e^{-n\delta})^{-1}.$$

Here we denote $e^{-\delta}$ by q. Applying the Euler function and the generalized partition function K on $ch M(-\rho)$ we deduce the following:

$$ch L(-\rho) = e^{-\rho} \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{1}{2}n(3n+1)} ch M(-\rho)$$

$$= e^{-\rho} \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{1}{2}n(3n+1)} \sum_{a,b>0} K(a\alpha_1 + b\alpha_2) e^{-a\alpha_1} e^{-b\alpha_2}.$$

Hence Proposition 5.9 in [4] implies

$$ch \ L(-\rho) = e^{-\rho} \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{1}{2}n(3n+1)} \times$$

$$\sum_{j>0} (-1)^j p^{(3)} ((j+1)a - jb - \frac{1}{2}j(j+1))e^{-a\alpha_1} e^{-b\alpha_2}.$$

The dimension of the weight space $L(-\rho)_{-\rho-l}$ is the coefficient of q^l in the right-hand side. Therefore, collecting up coefficients of q^m and q^n satisfying $m + \frac{3n^2 + n}{2} = l$ we obtain the result.

COROLLARY 3.2. Let $L(-\rho)$ be the irreducible G(A) module and G(A) be of type $A_{(1)}^{(1)}$. Then

$$\dim L(-\rho)_{-\rho-l\delta} = \sum_{n+\frac{k(k+1)}{2}=l} p^{(2)}(n)(-1)^k.$$

PROOF. Definition of the generalized partition function yields:

$$\phi(q)^{3} \sum_{m \geq 0} K(m\alpha_{1} + m\alpha_{2})q^{m}$$

$$= \sum_{k \geq 0} (-1)^{k} \phi(q)^{3} \sum_{m \geq 0} p^{(3)} (m - \frac{k(k+1)}{2})q^{m}$$

$$= \sum_{k \geq 0} (-1)^{k} q^{\frac{k(k+1)}{2}}.$$

Applying this to Theorem 3.1 gives the result.

REMARK. One can apply this process for affine Lie algebra of type $A_{(2)}^{(2)}$ to find a property similar to Corollary 3.2.

For the rest of this note we consider modules over any affine Kac-Moody Lie Algebra.

LEMMA 3.3. For any affine Kac-Moody Lie algebra and positive integers n, m with $n \ge m$, we have

$$[\ M(-\rho-m\delta)\ :\ L(-\rho-n\delta)\]\ \neq\ 0$$

and

$$[M(-\rho-m\delta):L(-\rho-n\delta)] = [M(-\rho):L(-\rho-(n-m)\delta)].$$

PROOF. The first assertion follows from Kac and Kazhdan's criterion in [4] since $(\delta, \delta) < o$. The second is obtained immediately from the following observation:

$$ch \ M(-\rho - m\delta) = e^{-m\delta} ch \ M(-\rho)$$

 $ch \ L(-\rho - n\delta) = e^{-n\delta} ch \ L(-\rho).$

Theorem 3.4. For any affine Kac-Moody Lie algebra and nonnegative integers n, m with $n \geq m$,

$$[M(-\rho - m\delta) : L(-\rho - n\delta)] \ge \dim G_{\delta}$$

and the equality holds when n = m + 1.

PROOF. By Lemma 3.3 it is enough to prove for the case m=0. Since δ is the smallest imaginary root, $r\delta$ can not be a positive root for 0 < r < 1. Therefore, by proposition 4.1 in [3] we have

$$\dim Hom_G(M(-\rho-n\delta), M(-\rho)) \ge \dim G_\delta.$$

This together with Corollary 5.6 in [5] completes the proof for the case m = 0.

Now let n=1 and let β be a positive root. If $t\beta < \delta$ for some positive integer t then β cannot be an imaginary root, thus $t(\beta,\beta) > 0$. Again, by Proposition 4.1 in [3] together with Corollary 5.6 in [5] we obtain the equality.

REMARK. Proposition 2.1 is equivalent to the following:

$$\sum_{n\geq 0} \left[M(-\rho) : L(-\rho - n\delta) \right] e^{-n\delta} = \prod_{n\geq 1} \left(1 - e^{-n\delta}\right)^{-\dim G_{n\delta}}$$

Considering a nontwisted affine algebra $X_l^{(1)}$, by Theorem 3.4 we obtain

$$p^{(l)}(n) \ge l$$
, for any integer n ,
 $p^{(l)}(1) = l$.

References

- 1. V. V. Deodhar, O. Gabber, and V. G. Kac, Structure of some categories of representations of infinite dimensional Lie algebras, Advances in Math. 45 (1982), 92-116.
- 2. V. Kac,, Infinite dimensional Lie algebras, Birkhäuser, Boston, Mass., 1983.
- 3. V. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite dimensional Lie algebras, Advances in Math. 34 (1979), 97-108.
- 4. V. Kac and D. H. Peterson, Infinite-dimensional Lie algebras, theta functions and modula forms, Advances in Math. 53 (1984), 125-264.
- 5. J. M. Ku, Structure of Verma module $M(-\rho)$ over euclidean Lie algebras, J. Algebra 124 (1989), 367-387.

Department of Mathematics Hoseoh University Asan, 337-850, Korea