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SOME PROPERTIES OF VERMA
MODULES OVER AFFINE LIE ALGEBRAS

WANSOON KIM

ABSTRACT. For nonintegrable weight —p, some weight multiplicities
of the irreducible module L(-p) over AE:; affine Lie algebras are
expressed in terms of the colored partition functions. Also we find the
multiplicity of L(~p) in the Verma module M(-p) for any affine Lie

algebras.

1. Introduction

For integrable highest weight modules over symmetrizable Kac-Moody
algebras, a character formula called the Weyl-Kac character formula,
was obtained by Kac. The Weyl-Kac character formula applied to cer-
tain modules gives Lie-algebraic proofs of some classical identities like
Jacobi’s triple product identity.

In [5], a conjecture on the character formula of the nonintegrable
highest weight module L(—p) for affine Kac-Moody algebras i.e., the
irreducible quotient of the Verma module M(--p), was proved. And
also some properties concerning embeddings of M(—p) were given.

In this note we first consider an affine Kac-Moody algebra G(A)
whose corresponding Cartan matrix A is

We say that this affine Kac-Moody Lie algebra is of type Ag; And
we present a concrete form of the character formula of the irreducible
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quotient L(—p) over an affine Lie algebra of this type, where weight
multiplicities are expressed in terms of the colored partition functions.
We use the character formula in [5] and the explicit expressions of gen-
eralized partition functions proved by Kac and Peterson in [4].

Secondly we consider some Verma Modules over any affine Kac-Moody
Lie algebra and we describe multiplicities of the irreducible quotients
that occur in the Jordan-Holder series of these Verraa modules.

Terminologies and notations in this note are stanidard and they may
be found in [2].

2. Preliminaries

Let G(A) be a Kac-Moody Lie algebra associatec to a symmetrizable
generalized Cartan matrix A. Then G(A) has a root space decomposi-
tion G(A) = H @oeca Go, where A € H* is the root system which is
equipped with a basis II . Elements in II are called simple roots. We
denote the set of positive real(respectively, imaginary) roots by A7,
(respectively, A} ). There exists an invariant bilinear form (-,+) on
G(A) which is nondegenerate on H. Aud this induces a nondegenerate
bilinear form (-,-) on H*.

For A e H*, let M(A) be the Verma module of G with highest
weight A. The character of Af()\) is defined to be the formal sum

ch M(A) = > dim M(\),e",
pneEH*

where M(A), = { o |h-v = plhy, forall h € H}. When
M(X), # 0, wecall g aweight of A/()\) and din: M(A), the weight
multiplicity of the weight p. The following is well known:

ch M(\) = e Z[x —p)e#

_ /\ Il —u —dim (7,
- 1

agd

here K is the generalized partition function (see [2)).
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The Verma module M(A) has a unique maximal submodule and
the corresponding irreducible quotient is denoted as L(A). And the
character of L(A) is defined in the same way as for Verma module

M) .
Let u € H*. A local composition series of Verma module M (A) at
4 is a decreasing filtration M(A) = Mo DMy D -+ D My = 0

of submodules of M(A) such that either A; /My, = L(8) for some
B>p or (Mi/Miy1)s = 0 forall 3> pu. The number of irreducible
quotients isomorphic to L(x) appearing in a local composition series of
M(X) at p is called the multiplicity of L(y) in M(A). We denote
this multiplicity by [ M(A) : L(p) ] (see [1} .

Given a generalized Cartan matrix 4 in case there is a nonzero column
vector u of nonnegative integers such that Au = 0, the corresponding
Lie algebra is called an affine Kac-Moody Lie Algebra. For an affine Kac-
Moody Lie algebra every positive imaginary root is an integer multiple
of the smallest positive imaginary root, which is denoted as .

Now, we fix a linear function p € H* such that 2(p,a) = (a,«a) for
all « € II. The following results were proved by J. M. Ku (see [5]).

PROPOSITION 2.1. Let G(A) be an affine Kac-Moody Lie Algebra.
Then the character formula of the irreducible G(A) module L(—p)
over G is given by:

ch L(—p) = ¥ H (1 — ¢ 7)™ dim Ga
(xEA;’
PROPOSITION 2.2. Let G(A) be an affinc Kac-Moody Lie algebra.
Then
[ M(=p) : L(=p—né)] = dim Homg ( M(~p—no), M(—p) ).

3. Main Theorem

In this section, we first consider an affine Lie algebra G(A) of type

1 .
AElg. There are two simple roots aj,a» and the set of roots are de-
scribed:

A, = {jor+ (G + Daz and (j+ 1ar+ joz, j =0,1,2,--+ 1},
AL, ={jaa+jaz, j=0,1,2,--- }.
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All root spaces are one dimensional. The smallest positive imaginary
root 6 is ay + as.

In the next theorem we show that the character of the irreducible
module L(—p) is linked to colored partition functions. First we recall
the definition of the Euler function ¢(q¢):

$(q) = H(l-q") = Z( 1" qyn(31+1)

“n2l nez

And the colored partition functions are functions defined to be functions
p(n) described in the following identity:

> gt = Jla-g¢n

n>1 n>1

THEOREM 3.1. Let G(A) be an affine Lie algebra of type A(l) and
let L(—p) be the irreducible G(A) module. Then

P 1. .
dimL{=p)_, s = > D (=D"=1YpPn -5+ 1))

m+ 31)22in =1 ]20

PROOF. Since dim G, =1 for any root a € A, by Proposition 2.1
we have

ch M(—p) = e * H (l—em@)y™dim CGa — (p [ H (1—e™"%)

a€A+ n>1

Here we denote e¢™* by ¢. Applying the Euler function and the gener-
alized partition function K on ch M(~p) we deduce the following:

ch L(—=p) = ™ > (=1)"¢#"*" ) ¢) M (—p)

nez

. 1 . _ -
= e "Z (—=1)"gzni3ntD Z K (aa; + bag)e 21~ bo2,
nez a,b>0
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Hence Proposition 5.9 in 4] implies

Ch L(—p) = C“P Z(_l)uq%n(3n+1) <

n€zZ

1
Z( 1)] (3) ]+1)(L—Jb——1(]+1)) aaxe—bag'
j>0

The dimension of the weight space L(—p)—,-i is the coefficient of ¢'
in the right-hand side. Therefore, collecting up coefficients of ¢™ and

g™ satisfying m + @ = [ we obtain the result.

COROLLARY 3.2. Let L(—p) be the irreducible G(A) module and

G(A) be of type 4(1) Then

dim L(—p)-,—1s = Z PP () (-1

TSI

PROOF. Definition of the generalized partition function yields:

#(q)® Z K{maq + may)g™

m>0
(k+1
= Z Z P 771———-——-—.+ ))q"l
k>0 m>0 2
= Z (—1)k ™5
k>0

Applying this to Theorem 3.1 gives the result.

REMARK. One can apply this process for affine Lie algebra of type

)
A2)

For the rest of this note we consider modules over any affine Kac-
Moody Lie Algebra.

to find a property similar to Corollary 3.2.
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LEMMA 3.3. For any affine Kac-Moody Lie algebra and positive in-
tegers n, m with n > n , we have

[ M{(—p—mé) : L(~p—né)] # 0
and
[ M(—p—mé) : L(~p~né)] = | M(—p) : Li--p—(n—=m)s)].
PROOF. The first assertion follows from Kac and azhdan’s criterion

in [4] since (6,6) < o. The second is obtained immediately from the
following observation:

ch M{—p—mé) = e "Pch M(—p)
ch L(—p—né) = ¢ "ch L(—p).

THEOREM 3.4. For any affine Kac-Moody Lie algebra and nonnega-
tive integers n, m with n > m ,

[ M(—p—mé) : L(—p—nd)] > dim Gy
and the equality holds when n=m + 1 .

PROOF. By Lemma 3.3 it is enough to prove for the case m = 0 .
Since é is the smallest imaginary root, ré can not be a positive root
for 0 <r < 1. Therefore, by proposition 4.1 in [3] we have

dim Homg( M{—p —nd) . M(—=p)) > dim Gs.
This together with Corollary 5.6 in [5] completes the proof for the case
m = (.

Now let n = 1 and let  be a positive root. If t3 < & for
some positive integer ¢ then 3 cannot be an imaginary root, thus
(8, 8) > 0. Again, by Proposition 4.1 in [3] together with Corollary 5.6
in [5] we obtain the equality.

REMARK. Proposition 2.1 is equivalent to the following:

Y I M(=p) : Li—p—no)le™ = [T (1 —e-mt)dim G

n>0 a1
Considering a nontwisted affine algebra \,( ' by Thecrem 3.4 we obtain
pDn) > 1. for any integer n,
PPy =1
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