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THE STRUCTURE CONFORMAL VECTOR
FIELDS ON A SASAKIAN MANIFOLD II

JONG-IK HYUN

ABSTRACT. The concept of the structure conformal vector field C on
a Sasakian manifold M is defined. The existence of such a C on M is
determined by an exterior differential system in involution. In this case
M 1s a foliate manifold and the vector field C enjoys the property to be
exterior concurrent. This allows to prove some interesting properties of
the Ricci tensor and Obata’s theorem concerning isometries to a sphere.
Different properties of the conformal Lie algebra induced by C are also
discussed.

0. Introduction

Let M(®,7n,£,9) be a (2m+1)-dimensional Sasakian manifold with
soldering form dp € THom(AYTM,TM) (dp: canonical vector-valued 1-
form) where ®,7,£ and g are the (1,1)-tensor ficld, the structure 1-form,
the structure vector field and the metric tensor of M, respectively. Since
one may write V& = ®dp, we give the following definition : Any vector
field C' such that

(0.1) VC = pdp + AVE p,AECTM,

is defined as a conformal vector field ((0.1) implies Lcg = 2pg)

In Section 2, it is proved that the existence of C on M(®,7n,£,9)
is determined by an exterior differential system in involution (in the
sence of E. Cartan [4]), and that any M which carries a vector field
C, 1s foliated by autoparallel three-dimensional submanifold of scalar
curvature +1, tangent to C'. (' and £. Besides such a Sasakian manifold
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possesses the remarkable property to be isometric to a unit sphere in a
(2m+-2)-dimensional Euclidean space [8].

Furthermore, any C is an ezterior concurrent vector field (see [11],
[9]) and of conformal weight 221 [7].

Let D¢ be the autoparallel distribution tangent to C,®C and £. In
Section 3, we consider three conformal vector fields C, € De,v = 1,2,3
generated by C by means of the Lie bracket and agree to call them the
assoctated conformal vector fields of C. If p and p, are the conformal
scalars corresponding to C' and C, respectively, then it is proved that
they define a 4-dimensional eigenspace e*(M) of the Laplacian A of the
eigenvalue 2m + 1.

If r denotes the scalar curvature of M, then we may write

Lor =2(2m(2m + 1) —r)p.

In this case when M is compact, some integral formulas of Watanabe
type (see [13]) are obtained.

More generally, consider a I — contact manifold M(®,5,£,g), i.e. a
contact metric manifold whose structure vector £ is a Killing vector field
[2].

We give the following definition : Any vector field X such that
(0.2) LxQ=h0+vAn

where Q = %dn, h € C*M, vy € A'M, is called an infinitesimal quasi-
conformal contact transformation of 2. In particular, if X is a conformal
vector field, then following [5], we will call it a quasi-biconformal vector
field.

In Section 4, we discuss some infinitesimal transformations defined by
C and its associated vector field C,. We prove that if R denotes the
curvature tensor, then the following formula holds:

(LcRXZ,Z2',2")=2p(Z NZ2")Z", z2,2',2" e XM
and the quality of C' to be exterior concurrent (abbreviation : E.C.)

implies
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This shows that C' defines an infinitesimal conformal transformation
of all the functions ¢(C, Z).

We also prove that C and C, are quasi-biconformal vector fields with
respect to the pairing (§2,7), and that Q is a relatively integral invariant

of Cy (see [1]).

1. Preliminaries

Let (M,g) be an orientable C'°°-Riemannian manifold and let V be
the covariant differential operator defined by the metric tensor g.

Let T(TM) be the set of sections of the tangent bundle TM and

b: TM — T*M be the musical isomorphism [10] defined by g.

If, following [10], we denote by

AYM,TM)=THom(AYTM,TM)
the set of vector-valued g-forms, q < dim M, then
d¥  AYM. TAM) — AT (M, TM)

means the ezterior covariant derivative operator with respect to V. It
should be noticed that generally d¥ = dv od" # 0, unlike d?.

If dp € AY(M,TM) denotes the soldering form of M, any vector field
X such that

(1.1) dY(VX)=V?X =xAdpe AZ\ M, TM),

is defined as exterior comcurrent (abbreviation :E.C.)(see [11],[9] ).
It has been proved [9] that 7 is necessarily given by

(1.2) T =ub(X); v # 0,

where v € C°°Af is the conformal scalar associated with X
If R denotes the Ricci tensor of V, it follows from (1.1) and (1.2) that

(1.3) RX, Z)=—-(n-1vy(X.Z)=>v=— RicX,

n-—1
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where Z € XM and dim M=n.
Let T € XM be any conformal vector field on M (or conformal Killing
vector field), that is

(14) Lrg=2p9<VzT,2' >+ <VaT,Z>=2p<2,2">
where p € C°M;Z,Z' € XYM and
divl

n

(1.5) p=

If R and r denotes the curvature tensor and the scalar curvature of
M respectively, we recall the following basic formulas (see [3], [13]):

(1.6) LTb(Z) = 2p0(Z) +5[T. 2], Z € XM,
(1.7)
(LTR)(Z,Z',Z") = — (Hessy,)(Z', Z")Z + (Hessv,)(Z2,2")Z'

—9(Z',2")(Veradp)Z + ¢(Z, Z")(Vgradp)Z',

where (Hessv,) is a covariant and symmetric 2-tensor defined by (Hesse p

(2,2')=g(Z,H,Z"); H,Z' = V z:gradp); see also [3],

(1.8) LTR(Z,2") = (Ap)g(Z,2') — (n — 2)(Hessv ,)(Z, 2Z")
and
(1.9) Lrr=(n-=1)Ap—rp,

where Z,Z',Z" € XM and [,] is the Lie bracket.
If 7) and 7, are conformal vector fields, then [7:, 73] is a conformal
vector field with (see [3])

(1'10) Ph, T, = [E'Tn/)'fz} + [p'fn‘c'f'z]'

We also recall (see [13]) that if M is a compact manifold and its Ricci
curvature is negative definite, then a conformal vector field other than
zero vector field does not exist.
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Any vector field X such that
(1.11) Lxb(X) = c(divX )h(X); ¢ = const

1s defined as a self conformal vector field.
We notice that in general (even if X is not a conformal vector field)
if dim M = n, then cn is called the conformal weight of b(X) (cf. [7]).
In addition, if M is a compact manifold, then the following integral
formula holds (see [13]):

n

. -9
(1.12) / (R(T,T — |[VT|* = —=(divT)*) = 0.
M n

We also recall the following theorm of M. Obata [8] (see also [3]): In
order that a gradient vecter field grad f be an infinitesimal concircu-
lar transformation on an n-dimensional manifold M, it is necessary and
sufficient that

(1.13) < Vzgradf,Z' >=v < Z,2' >, Z.Z2'e M,

where v is a non-vanishing scalar. If v = —c?f, then M is isometric to

.1 . . .
a sphere S" of radius — in an (n + 1)-dimensional Euclidean space.
c

2. A structure conformal vector field on a Sasakian manifold

Let M(®,n,£,¢9) be a (2m + 1)-dimensional contact metric manifold.
In such a manifold the structure tensors ®,n and ¢ satisfy {see [15]) the
equations :

=0, &) =1,
' =-T+nw&,  9(Z)=u&2),
(2.1) g(®Z, 82" = g(Z. 2"y - n(Z)m(2"),

1
g(®Z,2") = 3(11](2, z"), Z,7' € XM.
The & -Lie derivative is defined by

(2.2) (VP)Z =VIZ — OV 7,
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and it has been shown in [2] that ¢ is a Killing vector fields if and only if
L¢® vanishes. In this case M is called a K-contact manifold. A K-contact
manifold for which one has

(2.3) (Vz®)Z' = —9(Z,2")¢ +n(Z)Z,

1s called a Sasakian manifold.
If M is a Sasakian manifold, then £ is always E.C. and

(2.4) V2 = —y A dp = R(E, Z) = 2mg(€, Z)
(see [9]). Moreover, any E.C.vector field X satisfies
(2.5) VX = —5(X) A dp,
and the property of the exterior concurrency is invariant under the action
of & (ie. VI®X = —b(®X) A dp).
In the following we shall that
(2.6) dn = 2Q

and agree to call 2 the fundamental presymplectic form of M (abbrevi-
ation f.p.f.)

In the more general case when M is a I{-contact manifold, we introduce
the following two definitions

a) A vector field C on M such that

(2.7) VC = pdp + A\VE; P A ECTMN,

is defined as a structure conformal vector field. Effectively, since £ is a
Killing vector field, it is easy to see that the equation (2.7) satisfies the
conformal equation, that is (see (1.4)):

(2.8) Leg=2p9 < VzC,Z' >+ <VpuC,Z>=220<2,2' >,

where Z, Z' € XM, and this implies (see (1.5))

divC’' = (2m + 1)p
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b) Since we have set diy = 2Q, any vector field X such that
(2.10) LxQ =30+ Ay, v € AM,® e C®M,

is called an infinitesimal quasi-conformal contact transformation of
(abbreviation :i.q.c.c.t)

Denote by p: TM — T*M, X — ixQ the bundle isomorphism de-
fined by Q. If u is any 1-form on M(®,7,£,g) such that du is equated
by the second member of (2.10), then clearly u~'(u) defines an i.q.c.c.t.

From now on we shall be concerned with Sasakian manifold carrying
a structure conformal vector field C.

Next let

O =vect.{e;, Pe; =eu,eg =€|i=1,---,m;i* =1 + m}
be an adapted local field of orthonormal frames on M and let
O* = covect.{w',w' ,w® = 5}

be its associated coframe field.
Then the soldering form dp and E. Cartan’s structure equations are :

(2.11) dp=wtreq; A€ {z,2%,0}
and

(2.12) Ve=1~60¢e,

(2.13) de = -0 ¢ w,

(2.14) dfd = —-6AN64+0,
respectively.

In the above equation ¢ (respectively ©) is the local connection form
in the bundle O(M). (respectively the curvature forms on M), and in
terms of w, the f.pf.  is expressed by

(2.15) Q:ZwiAwi*,
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Further since M is Sasakian, by (2.1),(2.3) and (2.12), one has
(2.16) 0. =6, 6 =6

and by (2.16), we may check the formula V2®X = —b(®X) Adp(X is
an E.C. vector field) and

R(Z,Z')= -OR(Z,Z)Vo+ZNZ —®Z N O®Z'

(R is the curvature tensor).
Now in order to make simplifications, we set

(2.17) | CIIF =20, 5(C) = a,)(®C) = B =1
and notice that one has
(2.18) B=—-<C/VE>

Next, with the help of (2.1) and (2.12), we obtain from (2.7) that

(2.19) dl = pa — A\f3,
(2.20) dn(C)=pn—f
and

(2.21) da = 2XQ = X\ = const..

By (2.20), one gets at once
(2.22) df = dp A+ 2p§2,
and by (2.17) the equation (2.22) implies

(2.23) LoQ=2p04+dpAn.
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Since C' is conformal vector field, then following the definition (0.2),
we find the equation (2.23) that C is a quasi-biconformal vector field.

On the other hand, taking account of (2.4). one derives from (2.7) by
covariant differentiation

(2.24) VC = —(Ap—dp)Ap

The equation (2.24) proves that any structure conformal vector field on
a Sasakian manifold is E.C.
Using (2.5), we find

(2.25) a=b(C) = An—dp,

and we notice that the equation (2.25) is consistent with (2.21).

Denote now by 3" the exterior differential system which defines the
structure conformal vector field C'. Then, by (2.19),(2.20),(2.21),(2.22)
and (2.25), we see that the characteristic number of Y. (see [4]) are
r= 95,8, = 3,51 = 2. Cousequently, following E.Cartan’s test [4]. we
conclude that }~ is in involution and depends on two arbitrary functions
of one argument. Further, by (2.3) and {2.7), one derives

(2.26) VOC = (n(C') = N)dp + pVE +dp o €
Next, taking account of (2.25) and div Z =tr VZ, one finds
(2.27) div®C = 2m(y(C) - X)

We will outline the following property connected with this subject. First,
by (2.25), the equation (2.22) becomes

(2.28) dj =n Ao+ 2p%,

and by (2.1) , one has

(2.29) ipc ) = b(B2C) = | =

m
Then, taking account of (2.27), one may write

2m+ 1(dive(C)3
m dimM

. 1
(2.30) Locp = —8(diveC) =
m
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Hence, by definition (1.11), the equation (2.30) proves the following
salient property : The structure conformal vector field C on a (2m + 1)
-dimensional Sasakian manifold M, turns out, under the action of @, to
a self-conformal vector field of conformal weight Z%Inil

Next by (2.5), ®C is also an E.C. vector field, i.e.

(2.31) V29C = —h(®C)Adp = —B Adp.

Therefore, according to the general formula

<R(Z',2)Z,Z' >

Szing = : Z,72'e XM,
Zn =2 Z1E- < 2,2 >?

and by (2.24) and (2.31), one finds that the sectional curvature Secac
of ®C and C is given by

3 __<R(<I>C,C),fI>C>__H
YT IO TR

Denote now by D¢ = {C, ®C, £} the D-distribution defined by C, @C
and £. Then, if X¢, X € D¢ are any vector fields of D¢, it is easy to see
by (2.1), (2.7) and (2.26), that one has Vx, X¢ € Dc which expresses
the fact that Dc is an autoparallel foliation (cf. [6]). On the other hand,
since £,C and ®C, ¢ and E.C. vector fields, it follows, by linearity that
any vector field X¢ of D¢ is E.C.

As a consequence of this fact and the results of (9, we conculde that
the leaf Mc of D¢ is an autoparallel submanifold of scalar curvature +1
of the Sasakian manifold M(®,n, £, g) under consideration.

Next, from (2.25) it follows

(2.32) gradp = M - C
and taking account of (2.7) one gets at once
(2.33) Vgrad p = —pdp

which shows that grad p is a concurrent vector field [14]. From (2.33)
one gets instantly

(2.34) < Vzegradp,Z' >=—-p< 2,Z"' >



The structure conformal vector fields on a Sasakian manifold 11 671

Applying Obata’s theorem (see (1.13)), we obtain that the Sasakian man-
ifold under consideration enjoys the remarkable property to be isometric
to a unit sphere in a (2m+2)-dimensional Euclidean space.

Thus, we proved the following theorem :

Theorem 2.1 Any Sasakian manifold M (®,71,€,9) which carries a
structure conformal vector field C' is foliated by autoparallel 3-dimensional
submanifolds of scalar curvature +1 tangent to C, $C and € and is iso-
metric to a unit sphere in a (2m + 2)-dimensional Euclidean space. Fur-
ther, one has the following properties :

(1) The existence of C' is determined by an exterior differential system
in 1mvolution.

(i) Any C is an E.C. vector field and defines an infinitesimal quasi-

conformal contact transformation of
(iii) The vector field ®C is self-conformal of conformal weight QL,',;-F—I

3. Associated conformal vector fields of C

From (2.33) we get
(3.1) div gradp = —(2m + 1)p

Applying the general formula

Ap = —div grady; € CM,

one finds
(3.2) Ap=(2m+1)p

This proves that the conformal scalar p 1s an ergenfunction of A and
has 2m + 1 as its associated eigenvalue. As a consequence of this fact,
by (1.9), we may write

(3.3) Lor =202m(2m + 1) — rp,

where r denotes the scalar curvature of Af (®,1.£,9).
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In the view of the further discussions, we agree to set
(3.4) gradp = (1,

and since C; is concurrent, it also enjoys the properties to be conformal
and E.C.

Therefore, by (1.10), the bracket [C, C1] is also a conformal vecto field:
By (2.7) and (2.33), one has

(3.5) [C,Cy] = A(8C — pf).
Noticing that
(3.6) ®C - p€ = [C.¢]

and A=const., we shall denote by Cy the conformal vector field [C, €].
Then with the help of (2.26) one derives

(3.7) VCy = padp,

where we have set (see (2.27))

diveC

2m

(3.8) pr=n(C)—A=

for the conformal scalar associated with C2. By (2.20) and similar de-
vices, one gets

(39) gradpg = [67 C} = p& - ®C,

(3.10) dpy = pn — 3

and

(3.11) Ve = (2m + 1)pa,

which shows that py enjoys the same properties as p and p1 = —p, Le. 1t

is an eigenfunction of V with 2m + 1 as the associated eigenvalue. One
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also easily finds Vgradp, = —padp which matches Obata’s theorem (see
(2.34)).

Next consider the conformal vector field
(3.12) [C.Cy] =Cy = —pCy —n(C)C

By (2.20), (2.25), (2.33) and (3.7), the covariant differentiation of Cs is
experssed by

(3.13) VC3 = Apdp + BCA + p(C A E) + A(E A BC).

Since A =const., the equation (3.13) shows that the conformal scalar
- p3 = Ap associated with Cj satisfies also equation (3.2).

Finally consider the vector field [C},C;] and denote by PlCy ) its
associated conformal scalar. Using computations, similar to those per-
formed above, one fined plcy,c,) = 0, and this proves that the conformal
vector fleld [C1,Cy] is a Killing vector field, i.e. Lic,.c;09 = 0. Effec-
tively, setting I = [Cy, (2], using (3.7) and applying a straightforward
calculation, one finds

(3.14) VL = ~8CAC — p(C A£).

It is easy to obtain from the equation (3.14) that the Killing equation is
satisfied: Ly g = 0. Besides, comparison of (3.13) and (3.14) gives

V3 + VR = Apdp.

Therefore one may that the Killing vector field I\ is homologous exterior
concurrent to the conformal vector field Cj.

In the following we agree to call €, v = 1,2, 3(respectively ), the as-
sociated conformal vector fields (respectively the associated Killing vector
field) of the structure vector field C.

As can be seen from (2.33), (3.2), (3.11) and (3.13),the conformal
scalars p, p1, p2 and p3 associated with these vector fields are eigenfunc-
tions of A with the same eigenvalue equal to dim M. Therefore one may
say that these eigenfunctions define a 4-dimensional eigenspace (M)
of the eigenvalue dim M [12].
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Further we will need some properties of conformal vector fields C, Ch
and C;. We will discuss them now.
First of all, since we have seen that any vector field X¢ of the distri-
bution D¢ is E.C..it follows,by (1.3),(2.17),(3.4) and (3.6) that
R(C,C) = 2m||C|)* = 4ml,
(3.15) R(C1,C1) = 2m||Cu||* = 2m((p2)? + 2 = n(C))°),
R(C3,C2) = 2m||Ca||” = 2m((p1)* + 2 = n(C))"),
where p; is expressed by (3.8) and p1 = —p.
Next,by (2.7),(2.33) and (3.7), a short calculation gives
ICI* = (m + 1)p” +2mA%,
(3.16) IC1))* = (m + 1),
IC:l* = (m + 1)p}.
Assume now that M(®,,,£,g) is compact. Then, by reference to

(1.12) and identifying 7 with C, C) and C; respectively, from (3.15) and
(3.16) one finds the following integral formulas:

/(IIClV + A — (14 2m)p*) =0,

Gan 4 [ACI + 6 - (e ~ (14 2m)* =0,

{ /(”C”2 +pt = () -1+ 2m)p* 1 = 0.

The following theorem combines all results obtained in this section:

THEOREM 3.1. Let C be a structure conformal vector field on a (2m+
1)-dimensional Sasakian manifold M(®,7,€,9). By means of the Lie
bracket, the vector field C generates three other conformal vector fields
C,,v = 1,2,3 called the associated conformal vector fields of C'. The
conformal scalars p, p, corresponding to these vector fields, define a 4-
dimensional eigenspace ¢*(M) of A of the eigenvalue dim M = 2m + 1.
If  denotes the scalar curvature of M. then
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Lor =22m2m +1) — r)p,

and if M is compact, the integral formulas (3.17) hold.

4. Infinitesimal transformations defined by C and its associ-
ated vector fields

In this section we shall consider some infinitesimal transformations
defined by the structure conformal vector field C. If p is the conformal
scalar associated with C, we recall that one has

(4.1) (Hessvp)(Z,2") = ¢( Z, H,Z'),H,Z' =V zigradp
and
(4.2) Vegradp = —pdp.

First of all, by (1.7), (4.1) and (4.2), one fields after a short calculation
that

(43)  (LoRWZ,Z'.2")=2p(Z A 22", 2.2'.2" € XM.

Next, since C' is E.C. which implies (cf(1.3))

(4.4) R(C,Z) =2mg(C, Z),

by (1.8) and (3.2), one derives

(4.5) Leg(C,Z) =2pg(C, Z).

Therefore we may say that C' defines as infinitesimal conformal trans-
formation (i.c.t.) of all of the tensors ¢(C, Z). By a routine matter we

may prove that similar results hold for the associated conformal vector

fields C, of C.
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Further, by the general formula (1.6) and (3.6), one readily finds
(4.6) Len=pn+ f.

Now with the help of (4.6),(4.20) and the Lie derivative properties one
writes

(47) EI](C)CU = 277(0):077

Hence the vector field Y. = n(C)C defines an (i.c.t) of the structure
1-form 5. Further, since divC' = (2m + 1)p, one finds by (2.20)

(4.8) divYs = 2(m + 1)n(C)p,
and so (4.7) moves to

2m + 1 divYs
m4+1 "2m+1

(4.9). Lypn = o,

which shows that Y/ is of conformal weight 25"1_-2'1—1 with respect to n[7].

We shall now investigate whether there exists another vector field
Yo # Y4 of Do, which defines an (i.c.t) of n. With the help of (2.19)
and (2.25) one finds by a straighgtforward calculation that

(4.10) Y =20C + p@C + 21,

and operating by V, one gets

(4.11)

VY = p(A+0(C))dp+X)BCAE)+(Apn+pa—AB)DE+(2X2+p* +21)VE.
From (4.11) one derives by taking tr VY

(4.12) divYd = 2(m + 1)\ + 9(C))p,

and a standard calculation gives

2m + 1, divY¥
m+1 2m+41

.

L}'(!‘I 7 =
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Hence as Y, the vector field Y is of conformal weight 271—'::"1—1 with respect
to 7.

We shall now focus our attention on the distinguished conformal vec-
tor fields of Dc. We recall that we have shown (see (2.33)) that C de-
fines an infinitesimal quasi-conformal contact transformation of Q. Form
(2.32), (3.6) and (3.12) one derives

Lol =—=nAa—2p8,
(4.13) Loy =—nAB+2nC)-NQ,
Loz =—AnAa+ 2082

which proves that all these vector fields are quasi-biconformal vector
fields with respect to the pairing (1, Q2). Moreover, by a short calculation
one derives from (2.23) and (4.13) that

d( L) =0, d( L, 02) =0, v=1223.

Hence, following a well-known definition (see [1]), we may say that the
structure 2-form Q is a relatively integral invariant of the distinguished
conformal vector fields of D¢.

Finally since the Killing vector field ' = [C, C3] can be expressed as

(4.14) I{ = paCy + pCy; p2 =nlC)— A,
one quickly finds
iy =n(Cydy(C)— Adl = L =0.

According one may say that I\’ defines an infinitesimal automorphism of
the 2-form 2. We arrived at the final theorem of our considerations:

THOEREM 4.1. Let M(®.1,€.¢) be a (2m + 1)-dimensional Sasakian
manifold carrying a structure conformal vector field C and let D¢ be
the autoparallel distribution defined by C. Let C, € D¢, 1 = 1,23
be the associated conformal vector fields of C and let I € D¢ be the
associated Killing vector field of C' by the Lie bracket. Then

(1) There are two vector fields Y/, Y € D¢ which define infinitesimal

. . . . ) . . : 1
conformal transformation of n. and both are of conformal weight 241
] (=4 m+1

with respect to 1.
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(ii) C and C, define infinitesimal conformal contact transformatons
of the fundamental 2-form 3dn, and 3dn is a relatively integral invariant
of C and C,.

(ii1) The Killing vector field K defines an infinitesimal automorphism
of %dn.
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