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ISOMETRIES OF 4%

TAEG YOUNG CHOI

ABSTRACT. In this paper, we introduce the generalization Agi) of tridi-
agonal algebras A», and investigate the isometries of such algebras.

1. Introduction

The study of self-adjoint operator algebras on Hilbert space is well
established. By contrast, non-self-adjoint algebras, particularly reflexive
algebras, are only begun to be studied by W. B. Arveson [1] in 1974.
The sequence A;, Ay, -, Ay of tridiagonal algebras, discovered by F.
Gilfeather and D. Larson [2], is one of the most important classes of
non-self-adjoint reflexive CSL-algebras.

Let H be a 2n-dimensional complex Hilbert space with an orthonor-
mal basis {e1,ez,--- ,€2n}. Then A4 is in A, if and only if A has the

form
* * ¥
(* \

. *
\ + )
where all non-starred entries are zero and with an orthonormal basis
{e1,e2,--- ,e2,}. If we write the given basis in the order {e1,€3, -,
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€2n_1, €2,€4, - , €25}, then the above matrix has the form

(5 5.)
where Dy and D; are n x n diagonal matrices and S is an n x n matrix
with * in the (2,7)-, (j + 1,j)-, and (1,n)-components and 0 elsewhere
(1<:<n,1<j5<n-1). The algebra of all such matrices is unitar-
ily equivalent to the tridiagonal algebras A;,. As a generalization, we
consider the matrix S which has two = in each Es)w and each column.

1

0 D,

Then the collection of all matrices of the form gives a new

algebra which we could call A(Qi).

In this paper the following are proved:

(1) The algebra .,4;2,,) is unitarily equivalent to a direct sum of the
tridagonal algebras of small sizer:

2 )
A B Ay (0 > 200 by o ng =n)

(2) A map o : @5 4, — ®F_ Agn, is an isometry if and only if
there exist isometries o, : Az, — Aoy, for all e = 1.2,k
such that ¢ = @f_ ;.

2. Preliminaries and Examples

Let H be a complex Hilbert space. If £ is a lattice of orthogonal pro-
jections acting on H, then AlgL is the algebra of all bounded operators
acting on H that leave invariant every orthogonal projections in £. A
subspace lattice £ is a strongly closed lattice of orthogonal projections
acting on M, containing 0 and I. Dually, if A is a subalgebra of B(H),
the algebra consisting of all bounded operators acting on M, then Lat.4
1s the lattice of all orthogonal projections invariant for each operator in
A. An algebra A is reflexive if A = AlgLatA and a lattice £ is reflexive
if £ = LatAlgl. A lattice £ is commutative if each pair of projections
in £ commutes. If £ is a commutative subspace lattice, then AlgL is
called a CSL-algebra. By an isometry of an operator algebra 4 we mean
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a linear map ¢ : A — A such that ||p(A)|| = || A|| for every 4 in A. Let
A and B be subalgebras of B(H), We say that .4 and B are unitarily
equivalent if there exists a unitary operator U such that UAU* = B
(UAU* = {UAU* : A € A}). In this case, we write A ~ B. Let A; be
a subalgebra of B(H) for all i = 1,2,.-.n. Then @7, A; is the algebra
such that an operator 4 is in ", A; if and only if A = B, Ai, where
Aiisin A; forall i = 1,2, n. If p; : A; — A; is an 1sometry for all
t =1,2,---,n, then &% ,¢; means the map from D Ai into &7, A;
defined by (@70 )(BI; Ai) = B 9i(A:). Let ¢ and j be two nonzero
natural numbers. Then E;; is the matrix whose (4, j)-component is 1 and
all other entries are 0. An n x n matrix D, is said to be the backward
identity matrix if the (i,n — i + 1)-component is 1 for all ¢t = 1,2, n
and all other entries are 0. We denote the n x n identity matrix by I,.
I zy,22,- - ,2,, € H, then [£1,22, -+ ,2m] means the closed subspace
of H generated by the vectors z;,25,--- ,z,,.

EXAMPLE 2.1. Let So = Y30 By + Y02 Ej1j+ Eyp be an x n

matrix and let (I" SO) be in A%

o I on - If we put

U= Z(E‘Zk—l,k + Ezkntk)

k=1
Then UAZU* = 4,,.
EXAMPLE 2.2. Let
01 01 0
11 00 0
Se=[0 01 0 1/, and ({)5 f")eAﬁ?.
0 0 0 1 1 5
1 0100

Let U be the permutation matrix induced by the permutation

/1 23 45 6 7 8 9 10
“\1 726 58 3104 9/

Then UAZU* = A,,.
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EXAMPLE 2.3. Let

1 01000
010100
11010 0 0 Is S (2)
So = 010010’?‘“1(0 IG)EAI?'
000011
000101

Let U be the permutation matrix induced by the permutation

(1234
“\1 7309

Then U.AW(Q)U* = A4 & As.
Let J : C** — C?" be a map defined by J(z;,x2,--- ,Ton)t =

— — — . D) .
(Ton,Tan—1, - ,T1)" for every (1,29, - ,29x)t in C*". Then J is a

6 7 8 9 10 11 12
8 4 11 5 12 6 10/°

SV

conjugation.

LEMMA 2.4. Let A be a 2n x 2n matrix. Then (JAJ)* = JA*J and
JA*J = Dy, At Dy, where Day, is the 2n x 2n backward identity matrix
and A' is the transposed matrix of A.

The isometric maps of Az, are characterized in [3] From these results
and Lemma 2.4, we have the following theorem.

THEOREM 2.5. Let ¢ : Ay, — Az, be an isometry such that o(I) =
I. Then there exists a unitary operator V such that p(A) = VAV* or
p(A) = VA'V* for all A in Az,

3. Direct Sum of Tridiagonal Algebras

DEFINITION 3.1. Ann xn matrix T = (t;;] has a eyclic chain if there
is a finite sequence t; ;. ti, 5, tiy o tisgaa tisgs * o s tings > tir in of elements
in T such that f"iletlzjltiz,jztlsjztlsja ot gt g # 0.

THEOREM 3.2. If an n x n matrix Ty has a cyciic chain and A =

I, T\ . . : 2) . L .
( S IO) is in .A(gz,,), then Aizn) is unitarily equivalert to Azn.
n
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PROOF. Suppose T has a cyclic chain ¢, ;,, t.“l v s tingaatiy g, . Let
U be a (0,1)-matrix whose (k, i )-component is 1 and let V' be a (0,1)-
matrix whose (j, k)-component is 1. Then

til,jl tilyjn
tis g1 iy

is,j2  tis,js

UTV =
tinjn
Let W = (g ‘9) Then WAL W* ~ A,,

THEOREM 3.3. An algebra Ag‘;) is unitarily equivalent to a direct
sum of the tridagonal algebras of small sizer:

Ay 2 Ay @ Azny @ B Agny (05 2 2n +mz o g = ).

PRroOF. We define a bijective correspondence between the set of all
algebras A ) and a set of certain (0,1)-matrices as follows: Given an
algebra .A ) define a matrix 4 = [a,]]1<,1<2n by setting a;; = 1 if

E;; e .AQ,, and a;; = 0 otherwise. Then 4 = ( I(')' IS) , where S is an

n X n matrix with two 1 in each row and each column, and 0 elsewhere

as entries. Conversely, such a matrix gives rise to one ,452").
1 2 ... 2n .
A permutation o = " , | iInduces a 2n x 2n
(a(l) a(2) . . . o2n ))

unitary matrix U such that UAU* = [ay(;).(j)] for all A = [a;] in
B(H). So, in view of the foregoing, it suffices to show that by some
permutation o (i.e., by transforming simultaneously the -th row to o(7)-
th row and the j- th column to ¢(j)-column), A turns to a matrix of the

form A' = (IS f >, where

-1

S' =@ S and S, _ZE,,,,+ > Epriy+ Ein,

p=1 q=1
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forall i = 1,2,--- k. Suppose 1 < i< j<mnorn+l1l<z<j<2n
Then application of the transposition (i,7) to A does not change I, as
a result. The effect of the application on S is, in the former case, an
exchange of the i-th and j-th rows, and in the latter case, an exchange
of the i-th and j-th columns. Hence it suffices to show shat by repeating
exchanges of two rows and of two columns we make any matrix S into a
matrix S’. But this can be checked easily.

If .,4'(22,1) is the algebra corresponding to the resulting matrix A’ by the
transformation of A4 and if we put

")

= Z(En’ + Enginti)s

1=1

ny g
F= Z (Eii + Evginti)s
1t=n1+1
nyteot+ng
Fy = Z (Eii + Engingd)
t=nytetng o +1
2) . . .
where n; + ng2 + -+ + np = n, then F,-.A’(Qn) is unitary equivalent to
. 2 . N . .
Aap, (1 = 1,2,--- k) and hence A,(Zn) is unitary equivalent to Asp,, &

./42"2 VB ct e ’% -A211k-

Let H be a 2n-dimensional complex Hilbert space with an orthonor-
mal basis {€1, €9, -+ ,€2,} and let n; > 2(: =1,2,--- k) and ny +na +
.-+ 4+ np = n. Let £ be the subspace lattice of orthogonal projections
generated by

{ler]- fes)o- - [e2ny 1), [e1. s es], [e3, €q, 5],

Yy [("‘_)nl —3.C2 -2, 6‘2111—1}~ [f'l* €2n,—1» (“’.)nvl]}-,

and let £;41 be the subspace lattice of orthogonal projections generated
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{lezny+-42n;+1)s [€2n1 4 t2m; 43 - s (€20 42y ) —1]s
(€204 42n;+1) €2ny 4 +2n; +25 €21 +--+2n; +3],
[€2n1+...+2n,~+3,62n1+...+2n,-+4,62n1+~.-~2n,»+5], T,

[62711 +oo42n5 41 -3 €2ny 420 41— 25 €201+ 4205 4y —1]1

[e2n1+-~+2nj+l 1€2ny 4420540 -1, €204 4 2nj 40 ]}

forallj =1,2,--- ,k—1. Let £ =\/"_, £;. Then &*_, Ao, = AlgL

THEOREM 3.4. An algebra .Agfl) is a non-self-adjoint reflexive CSL-
algebras.

4. Isometries of Aé?

Let ¢ : Agi) — .Ag‘;) be an isometry. Since the algebras A(fn) and
®5_, Az, are unitary equivalent, there exists a unitary operator U7 such
that UA(Q?U* = @ | Asn,. Let o @ @5 Az, — ®E Ao, be a map
defined by ¢(A) = Ug(U*AU)U* for all A in @%_ | Asn,. Then ¢ is an

isometry and the diagram
(2) ¢ (2)
-AZn 'AZH

T l

k ¥ k
®i=1A2ni @;‘:]\/1271;

commutes. Hence in this section, we investigate isometric maps p from
6Btlc:l'/‘tzné to 691'6:1“42"{'

Since £ is a commutative subspace lattice, from the Lemmas 1 and 2
in [3], we have the following theorem.

THEOREM 4.1. Let ¢ : 69;“:1,,42"'. — @le,AQ,,i be an isometry. Then
w(I) is a diagonal unitary operator.

Let ¢ : ®F [ A2n, — ®E | Az, be an isometry and let o(I) = U.
Define ¢ : @F  A2n, — D5 Asn, by $(A) == U*p(A) for every 4 in
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@®*_, A2n;. Then ¢ is an isometry such that @¢(J) = I. Since the main
theorem would be true of o if it were true of ¢, we remark that all
isometries in this paper carry the identity into the identity. Let D = {A:
A is a diagonal operator in Bf_, A, }. Then it is easy to check that D is
the smallest von Neumann algebra containing £ and D = (¥, Az, ) N
(@5 Agn, )", where (@5 Agn,)* = {A* + Ais in @5, Azn,}. From the
Lemmas 5 and 7 and Definition 6 in [3], we have the following Theorem.

THEOREM 4.2. Let ¢ : @5 Ay, — BF_| A2n, be a surjective isome-
try such that (1) = I. Then

(1) ¢(D) = D.
(2) E is a projection in D if and only if o( E) is a projection in D.

From Lemma 11 in [3] and the minimal properties of projections, we
can prove the following theorem.

THEOREM 4.3. Let ¢ : 5 Aon, — @F_ | A2, be an isometry such
that o(I) = I. Then @(Ey) is a rank omne operator for each 1 =
1,2,-- . 2n.

From the modification of the Lemma 15 in [3], we have the following
lemma.

LEMMA 4.4. Let ¢ : 5| Ay,, — @5_| A2, be an isometry such that
¢(I) = I. Let E be a projection in D and let T be in @k Ag,, with
T = ETE*. Then we have

@(T) = o(E)e(T)o(E)" + @ E) o(T)¢(E).
Note that E;; = [e;] for all : = 1,2,--- ,2n. From Lemma 4.4, we get

the following theorem:.

THEOREM 4.5. Let ¢ : @f‘:l/tgm — &i}af:l.Ag,,l. be an isometry such
that o(I) = I. Let p(E2;_12;-1) = E,, and ¢(Eqj2;) = E4y. Then
lp—ql=1or2n; —1forsomei=1,2,---  k and o(Ey;_; 3;5) = ap,Epq
or ag, Ey, for some complex number o,y or agy.

PROOF. Since

1
E30;E2j-12;E2j25 = Eaj 125
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and
. . . gL - , )
E‘ZJ—I,Z]—IE21—1,21E2j—1,2j—1 - E2]—1v21’

Lemma 4.4 tells us that

() P(E2j-1,2) = Egup(Enj1,2;)Eqq + Eqqp(Eaj1,2j) Efy
and

(b)  @(Ezj-12j) = Eppp(E2j—12;)Epy + Eppp(E2j125)Epp

From the equation (a) we can get the following;:

(1) If ¢ = 1, then @(Ey;_12;) = a12E12 + 1,20, E1 24, for some
complex numbers a2 and o 2., .

(2) If ¢ = Y00, 2n; 4+ 1 for some m(m = 1,2,--- ,k — 1), then
‘P(EU—I,?J') = O‘q,q+1Eq,q+1 + O‘q,q+2nm+1—1Eq,q+‘2nm+1—1 for
some complex numbers ag  +1 and ag g42n,,,, —1-

) Ifqg#1, ¢# 32 2n+1for all m(m = 1,2,--- k- 1)
and ¢ is an odd number , then ¢(Ez;_; 2;) = agq-1E4q4-1+
aqq+1E4 ¢+1 for some complex numbers a, ,_1 and ay ,41.

(4) If ¢ # 3", 2n; for all m(m = 1,2, -- k) and ¢ is an even
number, then @(Ey;_12;) = ag_14E-14 + ags1,4E41,4 for
some complex numbers ay_1,4 and agyi 4.

(5) If ¢ = Y., 2n; for some m = 1,2,.... k, then w(Eyj_12;) =
ag_yE 14+ Qq_2n,,+1,9Eq—2n,,+1,9 for some complex num-
bers ag_;,4 and Qg 2npm+1,g-

From the equation (b) we can get the following:

(1) If p = 1, then @(E2j_12;) = ai2E12 + ay 20, E1 20, for some
complex numbers a2 and g 2,,.

(2) Hp =3" 20 +1 for some m(m = 1,2,---  k — 1), then
P(E2j-12;) = @pp1E, pi1 + 0 py20, 1 —1Ep ptang,,, -1 for
some complex numbers ay, ,4; and Op pt2npmpr—1

B)Ip#F1 p# 3 20+ 1 forall m(m = 1,2,k — 1)
and p is an odd number, then ¢(Eyj-125) = app_1E,,-1 +
ap p+1Ep 41 for some complex numbers a, ,_1 and a, ,41.

(4) Hp # S, 2n, for all m(m = 1,2,--- k) and p is an even
number, then ¢(E2;_12;) = ap_1pEp_1, + app1,pEpp1, for
some complex numbers ap-1p and apaqp.
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(5) If p = 310, 2n, for some m = 1,2,...,k, then ©(Ezj_12;) =
a1 pEp1p+ Cl'])_znm+],I,Ep_‘)n,1,n+1’p for some complex num-
bers a,_y, and &p_2n,,+1,p-

Hence we have the following conclusion.

If p=1, then ¢ = 2 or ¢ = 2n; and p(E3j_12;) = apgEpy for some
complex number a,,.

Ifp=S"2n;+1forsomem(l <m < k—1), ther. ¢ = S 2ni+2

. _ m+1 ] ] N |
or g =Y. 2n; and @(Eg;_12;5) = apeEpg for some complex number

Opy

fl1<p<2niory o 2ni+1<p< Z:’:{l 2n; and p is even, then
g=p—1orq=p+1and p(Eyj_12;) = agEy for some complex
number a,.

Fl<p<2umory . 2n;+1<p< Zi':;l 2n; and p is odd, then
g=p—1orq=p+1and p(Esj_12;) = apEps for some complex
number a,,.

If p=2n, then ¢ =1 or ¢ =2n —1and (Ly;— 25) = ag, E,, for
some complex number ag,.

If p=3 ", 2n; for some m(2 <m < k), then ¢ = Zm:—ll 2n;+ 1 or

2
n
g="2n; — 1 and p(Eqj_1,25) = ag, By for some complex number
Qyp-

From Theorem 4.5, we can get the following corollary.

COROLLARY 4.6. Let ¢ : <f£}f-‘:l,42,,i — @leAg,,i be an isometry
such that o(I) = I. Let p(Es;_12,-1) = E,, and @(Eq;, 2j) = Eg,.
Then Zﬁ]l 2n; +1 < p <37, 2n, if and only if Zm_l In; +1<
q < Z 2n,

By an argument similar to that of Theorem 4.5, we can obtain the
following theorem.

THEOREM 4.7. Let ¢ : &k Ay, — ¥ Aan, be an isometry such
that o(I) = I. Let o(Es;»;) = E,, and ﬂ(E2j+1,2j+l) =E,.
(1) If j # S i for allm = 1,2,--- k=1, then [p —q| =1
or 2n; — 1 for some { = 1,2,--- .k and Z,ll7nl+1 <p<
SO 2n, if and only if 21”«—1] I +1< g <30, 2n,.
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(2) Ifj = "7 n; for somem =1,2,--- k—1 and if 310" 2n; +

1<p< 3™ 2n;, then Y1 12n,~{-1 <\q<zm+l2n,

Let Fy,, = anlzt?iz-:2++2i'2n, 41 Ej; and let Ah, = Fan, (w] .
Agp;) forallt =1,2,---k. Let A3, = {an‘-((Bj=1A2nj) : (@j=1A2nj)
€ @leAznj }. From Theorem 4.4 and Corollary 4.5 and Theorem 4.6,
we can get the following Theorem.

THEOREM 4.8. Let ¢ : 695”':1./42",. — @f:l-AZn.- be an isometry such
that o(I) = I andletn; # nj foralli,j(1 < 4,7 < k). Then p(A'2n;) =
A'gp, foralli =1,2,--- k.

THEOREM 4.9. Let p; : Ay, — Az, be an isometry for all 1 =
1,2,--- k. Then the map ¢ : 6919:],42"'. — @k | Ay, defined by
ABE, A;) = DAy pi( A;) is an isometry.

PROOF. Suppose ¢; @ Az, — Azn, is an isometry for all 1 =
1,2,---, k. Then [lp(@f, 4| = || &k, %(4 i = mm{ll% (Al -
i=1,2,---, k) =max{||4;]| : t = 1,2,--- ,k} = || &, 4;||. Hence
@ Eszl.Azn.- - EB;;]AQR,- s an isometry.

THEOREM 4.10. Let ¢ : @ik:l.Agn.. — @leAzn.- be an isometry such
that o(I) = I and let ny = ny = -+ = ny. Then there exist isometries
@it Azn; — Agn, for all i = 1,2,---  k such that o = @F_ ;.

PROOF. Suppose p(A'zn,) = A'on,,, for all ¢ =1,2,---  k, where

1 2 . n
a:<0_(1) a(2) - a(k))

is a permutation. Let p; = ¢|a,,, forall t = 1,2,.-- k. Then ¢, :
A'Zn; - A2n

oty = Azn; is an isometry and p = B i
THEOREM 4.11. Let ¢ : e{é 1 Aan, — EB, 1 A2n; be an isometry
such that (1) = I and let n; # nj for all t.j3(1 < 2,5 < k). Then
there exist isometries p; : Ay, — Agy, forall » = 1,2,--- [k such that
— mk .
(P - @izl Qpl‘
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PROOF. Suppose ¢ : &5 Ayn, — @5 Azp, is an isometry such
that o(I) = I. Let ¢; = pl|4r,, for all 2 = 1,2, k. Then for each

ny

(1 << k), @i Ao, — Azp, 1s an isometry and ¢ = EBf___ltpi.

From Theorems 2.5, 4.10 and 4.11, we can get the following Theo-
rem.

THEOREM 4.12. Let o : &% Ay, — @®X Az, be an isometry
such that ¢(I}) = I. Then there exist unitary operators U; for all
t=1,2,--- ,k such that p(®*  A;) = ®%_U;B;U?, where B; = A; or
B; = AS for all A; In Az, .
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