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THE ALLOWANCE OF IDEMPOTENT
OF SIGN PATTERN MATRICES

SANG-GU LEE, SE-WON PARK

ABSTRACT. A matrix whose entries consist of the symbols +, —and 0
is called a sign pattern matriz. In [1], a graph theoretic characterization
of sign idempotent pattern matrices was given. A question was given
for the sign patterns which allow idempotence. We characterized the
sign patterns which allow idempotence in the sign idempotent pattern
matrices.

0. Introduction

A matrix whose entries consist of the symbols +, —, and 0 is called
a sign pattern matriz. For a real matrix B, by sgn B we mean the sign
pattern matrix in which each positive (respectively, negative, zero) entry
is replaced by + (respectively, —,0). For each n-by-n sign pattern matrix
A, there is a natural class of real matrices whose entries have the signs
indicated by A. If A = (a;;) is an n-by-n sign pattern matrix, then the
sign pattern class of A is defined by

Q(A) = {B € M,(R)|sgnB = A.}
Recall that a real n-by-n matrix B is said to be idempotent if B = B2,

Analogously, a squre sign pattern matrix A is said to be sign idempotent
if B? € Q(A) whenever B ¢ ((A); henceforth we write A = A%,
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If A and C are n-by-n sign pattern matrices, then A+C exists, that 1s,
A +C is qualitatively defined if a;jc;; # — for allZ and j in {1,2,--- ,n}.
The product AC exists if no two terms in the sum
n

Z Uk Chy
k=1
are oppositely signed for all 7 and j in {1,2,-- ,n}.

Suppose P is a property a real matrix may or may not have. A sign
pattern matrix A is said to require P if every real matrix in Q(A) has
the property P. Also, a sign pattern matrix A is said to ellow P if some
real matrix in Q(A) has property P. These definitions raise the following
questions( See.[1]):

(a) Identifying the sign idempotent sign patterns.

(b) Identifying the arbitrary sign patterns that allow idempotence.

First we will introduce some examples, the following sign pattern
matrix
(1) A= (+ - ) is sign idempotent,
0 +
but. no real matrix in the sign pattern class of A is idempotent. This
implies that A does not allow idempotent.
The other matrix

o= o]
(VR (R

is also real idempotent,

jo
<

0 0

8%

Il
SV IEEI OV I (VN I VR
o= o= o= o=

but sign pattern matrix B is not sign idempotent.

We now characterize the sign patterns that allow idempotence. In
order to simplify our notation. in the remainder of this paper, we let
the index set {1.2.---,n} be represented by I, SI be the class of sign
idempotent matrices, and P = (pi;) be the product ratrix A?
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LEMMA 1.1. If A = [a;j] €SI, then a;; =0 or + for all i € I,.
PROOF. Since A® = A, let [pij] = A® then Pij =) pe; @ikGkj. There-

fore

Pii = @@y + aiadg; + .+ @30 .+ Ginlni = aii.
Since Z:=1 airakj contains a;;a;;, from the definition of product, all
term must have the same sign or have some zeros in it. Thus, without
loss of genernality, a%, = a;;. So, a;; =+ or Oforall i€ I,. M

A sign pattern matrix A is called partly decomposable if there are
n-by-n permutation matrices ; and @, such that

A 0
AQT = [ 1 |
Ql QZ (AZ] A22/’ »

where A;; and Ay, are square matrices, In the special case, when (),
= Q7, then A is said to be reducible. If no such permutation matrices
exist, then A is said to be (fully) indecomposable.

Here we consider the two cases, the one is a1 irreducible sign idempo-
tent case and the other is a reducible case.

1. Irreducible sign pattern matrices

First, we consider the casc that A is an irreducible sign idempotent
matrix. We may note that if a;; = ) for some indices ¢ and j in I, . then
A= A% only if A is partly decomposable. ([1]5. This imply that every
irreducible sign idempotent matrix does not have zero entry.

LEMMA 1.2. [1, Lemma 1.3] IfA isann xn (n 2 2) irreducible
sign idempotent matrix, then A is entrywise nonzero.

We note that any sign idempotent matrix with zero entry is reducible.

LEMMA 1.3. If A € SI has all zero diagonal blocks, then A is a zero
pattern matrix.

PROOF. Since A has a zero entry, A4 is reducible. therefore, A is a zero
pattern matrix by the upper diagonal completion process.(In [1]). M



564 Sang-Gu Lee, Se-Won.Park

THEOREM 1.1. If A €SI is an irreducible, then A := AT,

PROOF. Suppose A = [«;;] € SI and irreducible. By Lemma 1.1 and
1.2, a;; = + for all 7 € I,,. For any 7,j € I, such that 2 # 7,

n
A = E Ay = iy + ...+ ajdji + ...+ Ainln;.
k=1

Since a;; = +. a;;a;; = 0 or +. But A = [ai;] contains only nonzero

entries by Lemma 1.2. Thus a;;a;; = + forany 7,5 € /n whenever 7 # j.
T

Therefore, a;; = aji,and A=A". N

THEOREM 1.2. IfA € Slis an irredusible, then A allows idempotence.

PROOF. Let A be the support matriz of A = [ai;] © Q(A) defined by

1, if ;5 =+
A = [ai;] where a;; = ¢ —1, ifa;=—
0. ifa;;=0.

(Note : For an entry «,;, the support of a;; is defined similarly)

Suppose A € Sl is rreducible, 1.e., A = AT, then %A € Q(A). Let A?
= [pij] where A is the support matrix of A. Since p;; = Zzzl A kg,
sgn[pij] = sgnfai;]. So 14 =[Lai;] € Q(A). Let (+4)* = [pi]-

n

— 1 1
Py = Z(—“ik)(;“ki)

n

i

= —a;;, for all  and j.
n

Thus, we have shown that (%A)2 = %A € QA). |
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EXAMPLE. Let

A=

L+ +
|+ +

+
Then A € SI and A is irreducible. Let A be the support matrix of
A € Q(A). That is,

1 1 -1
A= 1 1 -1 ]€eQ(A),
-1 -1 1
then 1 11
3 3 3
1 1 1 1
ZA = hd =z
3 3 3 3
1 1 1
3 3 3
Also,

!
l

|
Ol o] o] =

O ] o | =

!
ol —ea| —ea |

Wl —eatl—

O o e | =

Wil — | —

3| PO | PO | =

COl o] r=Co |+

|

| e | o]

2. Reducible sign idempotent matrices

Now, let A €SI be reducible. In a modified Frobenius normal form
(1], suppose A = [A;;] be a n-by-n reducible, partial block sign pattern
matrix. Since A is STif and only if each off-diagonal block A4,; is obtained
using the upper diagonal completion process.(Sze. [1])

LEMMA 2.1. {1, Lemma 2.3] If A is an n x n reducible sign pattern
matrix such that A;; and A;; are entrywise positive blocks. Then A is
sign idempotent only if the sign pattern of A;; is obtained as follows:

(1) A;; contains only +’s or only —’s, or

(2) Ai; = 0.
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LEMMA 2.2, [1, Lenuna 2.3 and 2.4(1)] Suppose A is an n xn reducible
sign idempotent matrix where A;; Is an m; xm; entrywise positive matrix
and Ajj is a 0-block. If A;; contains a O-entry or a + ora —, then A;j is
an entrywise O-column or +-columu or —-column martrix(respectively ).

LEMMA 2.3. [1. Lemma 2.4(ii)] Suppose A is an n x n reducible sign
idempotent matrix where A;; is a 0-block and Aj; is an mj xn; entrywise
positive matrix. If A;; confains a 0-entry or a + or & —, then A;j is an
entrywise (-row or +-row or —-row matrix(respectively ).

THEOREM 2.1. Let A;; aud Ajj are entrywise positive block subma-
trix of A €SI for some i and j in I,,. If A allows idempotence, then A;;

is a 0-block.

PROOF. Let A4;; aud A;; are +-blocks(entrywise »Hositive bhlock ma-
trix) in a modified Frobenius normal form and let A” = [P;;] where P
is a block matrix, such that

Pij = AiAi; + A A + -+ A4, = Ay
By Lemma 2.1, each signs of entries in A,; are same because A;; and
A;; are +-blocks. Therefore the sign is determind by these two terms.

Thus we only need to consider such A;,A;; and A;;A,;.
Therefore, we also know that

(a) AAi +AijAj = Ay
Now, we multiply each side of () by A;;, then

AAGA+ AGAGA = AsAy.
Thus,

() AA+AGAGA, = ALAy
(1) (2) {3)

In the sign pattern matrix, since A;; and Aj; are +-blocks, though
(1).(2) and (3)terms are not 0. i.e., though A;j is not C-block, (/3) 1s true.
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this is the result of Lemma 2.1. So, Q(A) must contains real matrix that
satisfy () in order to allow idempotence. But, in fact, for any

AiiAijAj; =AuA; - AiA ;=0

Since A;; and Aj; are entrywise positive, A;; = 0. Therefore for the
case that A;; and A;; are +-block, A;; must be 0-block in order to allow
idempotent. - W

From the above Theorem, we know that if A ¢ SI allows idempotence,
then A;; is a 0-block whenever A;; and 4;; are +-block. In order to
simplify our argument, we only need to consider the cases that satisfies
the above fact. Let the set, {A €SI | A;; is a 0-block whenever A;; and
Aj; are +-block }, to be SI0.

THEOREM 2.2. If a reducible A € SIO has no O0—block in the main
diagonal, then it allows idempotence.

PROOF. It comes directly from the hypothesis that A4 is a direct sum
of irreducible sign idempotent matrix. MW

THEOREM 2.3. If a reducible A € SIO have a 0—block at the top or
bottom, then it allows idempotence.

ProoF. Let A € SIO is reducible. If A has a 0-block at the top,
without loss of generality (See Lemma 2.1), suppose Ay is a (1 x 1)-zero
block. Let A be a sign pattern matrix as following :

0 )
A=10
A
0

Now, we consider the following cases in order to show that a real idem-
potent matrix exists in Q(A) ;

(i) A € Sl is irreducible.
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(ii) A is a direct sum of irreducible sign idempoterit matrices.

For the case of (1), suppose A ¢ Slis irreducible. We may note that
Ais a positive (n — 1) x (n — 1) block sign pattern matrix because of
Lemma 1.1 and 1.2. Let A€Q(A) be the support matrix of A.

We define a 1 x (n — 1) matrix § = [a12, a3, -, a1, and

6 =r-lay,az, - ar,] = a1z, @13, ary,] for somer €RY.

Therefore, |a1i| = r for all 1,2 <7 <n.

Since A = [4+1](n-1)x(n_1)» we now define an (n — 1) x (n — 1) matrix
A by
~ 1 “ . ) ~ ~
A= " A where 4 is a support matrix of A € Q(A).
n—
Then
0 (R D)] . Qn
A= ay] = € Q(A)
0 Jn,-—l

where J; = [%]kxk- Since A € M,_;{R) is in the case of irreducible,
so we only need to check on py;for all i,i € {2,--- ,n}. Since ajpax
has all nonzero signs for each k. it has the same sign as a;;, for each
i,i € {2, ,n}.

n

1
P = Z 7 - T support(sign ajpo i)

- n-

T

] Z support(sign ayrag. )
k=2

1
n -
1

n —

=r- - support(sign ay;)
= r - support(sign a;;)

= (I]‘,.
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Therefore, A2 = A€ Q(A).
If A has a 0-block at the bottom, without loss of generality, suppose
A,, = 0. By using column instead of row, similarly we can show the

allowance of idempotent. W

EXAMPLE. Let

0 - - -
A=|0 : + + +|eSrIo.

0 + + +

0 : + + +

From the above algorithm, we can easily find Ac Q(A) that shows it
allows idempotence. We may note that 42 = A and

R

0o = = =

- 3 3 3
A= 0 _1_ l l
0o = = =

3 3 37

NOTE: For the case that A;; € M) where k > 1, we now use Lemma
2.1. If A;; i1s a 2x2 0-block and

0 0 + +
0 0 - -
A= ,
00 + + +
0 0 + + +
00 © + + +
similarly we can easily find an idempotent matrix
0o 0o 5 &5 5
0 -2 =2 -2
0 111
A= . 303 3| e
0 0 = = =
3 3 3
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Since the signature similarity preserves allowance of idempotent, the
cases that signs are changed has been taken care.

For the case of (ii), suppose A is a direct sum of irreducible block.
Let 4 = [aijlnxn € Q(A) be the support matrix of A. Then we define a

1 x (n—1) matrix = [a12,a13, - ,a1,) and an n > n block matrix
(0 mer 3T e T T
~ Tk, 0 0
Ao | e JM ................... O
I ARN AU ()
B J L

where 7; = ri-support(signa; ), for some r; € RT. Also, we only need to
check [p1i],2 < i <n,

k:
1 :
Pri = Z r;- 7; -supp()rt(sxgl‘la1jClji)
].T.:l
1 .
=7, = - support{signa;;)

)

= r; - support(signay;)

= ay;.

Therefore, A2 = A ¢ Q(A)

We may note the following, let

00 + + — —
00 - — + +
00 + + 0 0
e (
A=1L0 0 4+ + o o] €5
00 0 0 + +
00 0 0 + +
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then, there exists an idempotent matrix A,

00 5 5 =7 -7
00 -3 =3 9 9

1
i_ |00 5 3 0 0
: O o0 3 3 0 0
00 0 o0 % -13
oo o o 1 4

THEOREM 2.4. If a reducible SIO has some 0—block in the main
diagonal, then it allows idempotence.

PRrROOF. Let A € SIO is reducible and Aj; is a 0-block for some 7,
where A = 3" Ay, For the case 7 = 1 and m, it was shown thatit
allows idempotence in Theorem 2.3. By Theorem 2.1,

Apj must be a 0-block, for any h,j € I, such that h,j # 1,

in order to allow idempotent. Therefore, by Lemma 2.1 and 2.2, since
each column(resp..row) entry of A;p(resp., Ar;) has same blgnq the real
matrix exists in ((A),that cach column(resp.,row) of 4,“16\1) AL,)
have same absolute Valu( And [p] is determined by the case of (i)
and (i1) in Theorem 2.3. So, the proof is completed. W

EXAMPLE. Let

+ + 0 - 4+ 0 0 0 0
+ + 0 -+ 0 0 0 O
o 000 0 - - - -
0 00 0 0 0 0 0 0
A={0 0 0 0 0 0 0 0 0],
0O 0 0 0 0 + 4+ + +
0o 0 0 0 0 + + + +
0 0 0 0 0 + + + +
0 00 0 0 + + + +
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—

then there exists an idempotent matrix A €Q(A4

(% i 0 -7 5 0 0 0 0
i1 0 -7 5 0 0 0 O
6o 0 o 0 0 -3 -3 -3 -3
i_|0 o o0 0o 0o 0 0 0 0
~fo o o o 0o 0 0O 0 O
o o o o0 o0 1 + + 1
o o o o o 1+ 1 1 2
\0 o o o o + 1 2 4

We note that if A;; and A;; are 0-blocks, since the sign of A;j is de-
termined by A; ;- and Ai4,; in the upper diagonal completion process,
real entries are determined by x;{i_]'~1 and Z,'.H,j of A. As a conclu-
sion, for any reducible matrix in SIO(i.e., a subset of SI),we have shown
that there exist a real idempotent matrix using procedure from proofs in
Theorem 2.1 to 2.4 in reverse order. This leads the following Theorem ;

THEOREM 2.5. If A is a reducible SI ,then A allow idempotence ex-
cept the case that there is a pair (i,j) such that A;; isa + or — block
even though A;; and Aj; are + blocks.

EXAMPLE. Let

o -0 4+ 0 0 +
o + 0 — 0 0 -
6 0 00 - - +
A=|0 0 0 0 0 0 0| €SI,
0 0 00 + + -
0 0 0 0 4+ + -
0 o 0 0 0 0 O
then, there exists an idempotent matrix Ae Q(A)
0 -4 0 28 0 0 32
0 1 0 -7 0 0 -8
0 0o 0 -3 -3 230
A=l0 o 0o o 0o o0 0
o 0o o o0 3 3 -5
g 0 0 0 % -;— -5
0 0 0 0 0 O 0
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